Suppr超能文献

电-机械化学门控金属-酚醛纳米笼用于控制客体释放自供电贴片和可注射凝胶。

Electro-Mechanochemical Gating of a Metal-Phenolic Nanocage for Controlled Guest-Release Self-Powered Patches and Injectable Gels.

机构信息

Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-gun, Daegu 42988, Republic of Korea.

Department of Industrial Chemistry, Pukyong National University, 365, Sinseon Ro, Nam-Gu, Busan 48547 Republic of Korea.

出版信息

ACS Nano. 2021 Sep 28;15(9):14580-14586. doi: 10.1021/acsnano.1c04276. Epub 2021 Sep 9.

Abstract

Recent advances have led to the development of intelligent drug-delivery systems such as microchips, micropumps, and soft devices with sensors; however, the facile preparation of transdermal and implantable systems modulable to various stimuli remains elusive. In addition, the use of a battery limits their wearable and implantable applications. Therefore, to overcome these disadvantages, we herein suggest a facile strategy to prepare electro-mechanochemically responsive soft gel composites with molecular gatekeeper-based nanocontainers. We found that a metal-phenolic coordination network can act as an efficient self-healable and adaptive gatekeeper in response to electrical and mechanical stimuli owing to the reversible dynamic bonds and adhesiveness to the silica surface. The porous channels of mesoporous silica nanoparticles are filled with guest molecules, and the exterior is wrapped with metal-tannic acid (TA) networks. Owing to the robustness of metal-phenolic network, the guest molecules are efficiently entrapped in the channels but released by electrical and ultrasound input. Voltage-dependent changes in the guest release rate provide control over the dosage on demand. The combination of hydrogel matrixes with the responsive nanocapsules enables the construction of a series of adaptive gel composites capable of successive guest release in response to electrical, ultrasound, electromechanical, and triboelectric stimuli. The Korsmeyer-Peppas model revealed that the release mechanism is non-Fickian, which indicates the presence of boundaries around the guest-loading channels ( = 0.739, = 0.9574 when 2 V is applied). This study realized efficient platforms for active-type drug-delivery applications based on transdermal patches and implantable gels with remotely controllable release characteristics.

摘要

近年来,智能药物输送系统如微芯片、微泵和带有传感器的软设备等方面取得了进展;然而,制备可对各种刺激进行调节的经皮和可植入系统仍然难以实现。此外,电池的使用限制了它们的可穿戴和可植入应用。因此,为了克服这些缺点,我们在此提出了一种简便的策略,即用基于分子门控器的纳米容器制备电-机械化学响应软凝胶复合材料。我们发现,金属-酚配位网络可以作为一种有效的自修复和自适应门控器,对电和机械刺激做出响应,这是由于其可逆的动态键和对二氧化硅表面的粘附性。介孔硅纳米粒子的多孔通道中填充有客体分子,外部包裹着金属-单宁酸(TA)网络。由于金属-酚网络的坚固性,客体分子被有效地包埋在通道中,但通过电和超声输入释放。对客体释放率的电压依赖性变化提供了按需控制剂量的能力。水凝胶基质与响应性纳米胶囊的结合,使一系列自适应凝胶复合材料得以构建,这些复合材料能够响应电、超声、机电和摩擦电刺激进行连续的客体释放。Korsmeyer-Peppas 模型表明,释放机制是非 Fickian 的,这表明在客体加载通道周围存在边界(当施加 2 V 时,=0.739,=0.9574)。这项研究实现了基于经皮贴剂和可植入凝胶的主动型药物输送应用的有效平台,具有远程可控释放特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验