State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China; Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, PR China.
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
Acta Biomater. 2019 Sep 15;96:281-294. doi: 10.1016/j.actbio.2019.07.024. Epub 2019 Jul 15.
Near-infrared (NIR)-responsive hydrogels have exhibited remarkable advantages in biomedical applications especially for in situ therapeutic delivery, because of their deep-tissue penetration capacity, minimal invasiveness, and high spatiotemporal selectivity. Nevertheless, conventional NIR-responsive nanocomposite hydrogels suffer from the disadvantages of limited photothermal effect and potential leakage of the physically mixed photothermal nanoagents. To overcome these limitations, we herein designed an injectable thermosensitive photothermal-network hydrogel (PNT-gel) through the host-guest self-assembly of a photothermal conjugated polymers and ɑ-cyclodextrin. The conjugated-polymer backbones can directly convert incident light into heat, endowing the PNT-gel with high photothermal conversion efficiency (η = 52.6%) and enhanced photothermal stability. Meanwhile, the mild host-guest assembly enable the shear-thinning injectability, photothermally-driven and reversible gel-sol conversion of the hydrogel. Consequently, the remotely controlled on-demand release of doxorubicin (DOX) was achieved via photothermal-induced gel-sol transition. Because the backbone of the hydrogel absorbs NIR light and mediates the photothermal conversion itself, the PNT-gel demonstrated the advantage of a prolonged retention time and thus permitting repeatable NIR treatment after a one-time intratumoral injection of this hydrogel. Under repeated NIR laser irradiation (0.15 W cm), the synergistic photothermal-chemotherapy mediated by the PNT-gel almost completely eradicated 4T1 breast cancer. This work not only presents a multifunctional therapeutic platform integrated with inherent photothermal characteristic and reversible stimuli responsiveness for on-demand delivery and combinatorial photothermal-chemotherapy, but also provides a new strategy for the development of the next-generation of light-modulated intelligent hydrogels. STATEMENT OF SIGNIFICANCE: The conventional NIR-responsive nanocomposite hydrogels suffer from the disadvantages of limited photothermal effect and possible leakage of the physically mixed photothermal nano-components. To overcome these limitations, we hereby fabricated a NIR-responsive themosensitive photothermal-network hydrogel through the supramolecular assembly of conjugated polymer. The conjugated polymeric backbones of the hydrogel directly convert NIR light to heat, endowing the hydrogel with good photothermal effect and long-term photothermal stability. Meanwhile, the dynamic crosslinkages via supramolecular assembly enabled the shear-thinning injectability and reversible gel-sol transition of the hydrogel, facilitating the photothermal-induced drug release. Our strategy demonstrated the efficacy of using conjugated polymer as the backbone of hydrogel for the construction of a new injectable NIR-responsive hydrogel system with enhanced photothermal capabilities and improved therapy outcomes.
近红外(NIR)响应水凝胶在生物医学应用中表现出显著的优势,特别是在原位治疗输送方面,因为它们具有深层组织穿透能力、最小的侵入性和高时空选择性。然而,传统的 NIR 响应纳米复合水凝胶存在光热效应有限和物理混合光热纳米制剂潜在泄漏的缺点。为了克服这些限制,我们通过光热共轭聚合物和α-环糊精的主客体自组装设计了一种可注射的热敏光热网络水凝胶(PNT-凝胶)。共轭聚合物主链可以直接将入射光转化为热量,赋予 PNT-凝胶高的光热转换效率(η=52.6%)和增强的光热稳定性。同时,温和的主客体组装使水凝胶具有剪切稀化的可注射性、光热驱动的和可逆的凝胶-溶胶转变。因此,通过光热诱导的凝胶-溶胶转变实现了阿霉素(DOX)的远程控制按需释放。由于水凝胶的骨架吸收近红外光并介导光热转换本身,因此 PNT-凝胶表现出延长保留时间的优势,从而允许在一次肿瘤内注射这种水凝胶后重复进行近红外治疗。在重复的近红外激光照射(0.15 W/cm)下,PNT-凝胶介导的协同光热化疗几乎完全根除了 4T1 乳腺癌。这项工作不仅提出了一个多功能治疗平台,该平台集成了固有光热特性和可逆刺激响应,用于按需输送和组合光热化疗,而且为下一代光调制智能水凝胶的发展提供了一种新策略。意义声明:传统的 NIR 响应纳米复合水凝胶存在光热效应有限和可能泄漏物理混合光热纳米组件的缺点。为了克服这些限制,我们通过超分子组装共轭聚合物制备了一种 NIR 响应热敏光热网络水凝胶。水凝胶的共轭聚合物骨架直接将近红外光转化为热量,赋予水凝胶良好的光热效应和长期光热稳定性。同时,通过超分子组装形成的动态交联赋予水凝胶剪切稀化的可注射性和可逆的凝胶-溶胶转变,有利于光热诱导药物释放。我们的策略证明了使用共轭聚合物作为水凝胶骨架构建具有增强光热性能和改善治疗效果的新型可注射 NIR 响应水凝胶系统的有效性。