Suppr超能文献

预测编码反馈导致递归神经网络中出现感知幻象轮廓。

Predictive coding feedback results in perceived illusory contours in a recurrent neural network.

机构信息

CerCO, CNRS UMR5549, Toulouse, France.

CerCO, CNRS UMR5549, Toulouse, France; ANITI, Toulouse, France.

出版信息

Neural Netw. 2021 Dec;144:164-175. doi: 10.1016/j.neunet.2021.08.024. Epub 2021 Aug 26.

Abstract

Modern feedforward convolutional neural networks (CNNs) can now solve some computer vision tasks at super-human levels. However, these networks only roughly mimic human visual perception. One difference from human vision is that they do not appear to perceive illusory contours (e.g. Kanizsa squares) in the same way humans do. Physiological evidence from visual cortex suggests that the perception of illusory contours could involve feedback connections. Would recurrent feedback neural networks perceive illusory contours like humans? In this work we equip a deep feedforward convolutional network with brain-inspired recurrent dynamics. The network was first pretrained with an unsupervised reconstruction objective on a natural image dataset, to expose it to natural object contour statistics. Then, a classification decision head was added and the model was finetuned on a form discrimination task: squares vs. randomly oriented inducer shapes (no illusory contour). Finally, the model was tested with the unfamiliar "illusory contour" configuration: inducer shapes oriented to form an illusory square. Compared with feedforward baselines, the iterative "predictive coding" feedback resulted in more illusory contours being classified as physical squares. The perception of the illusory contour was measurable in the luminance profile of the image reconstructions produced by the model, demonstrating that the model really "sees" the illusion. Ablation studies revealed that natural image pretraining and feedback error correction are both critical to the perception of the illusion. Finally we validated our conclusions in a deeper network (VGG): adding the same predictive coding feedback dynamics again leads to the perception of illusory contours.

摘要

现代前馈卷积神经网络(CNNs)现在可以达到超人类水平的解决一些计算机视觉任务。然而,这些网络只是大致模拟人类的视觉感知。与人类视觉的一个不同之处在于,它们似乎不像人类那样感知错觉轮廓(例如 Kanizsa 正方形)。来自视觉皮层的生理证据表明,错觉轮廓的感知可能涉及反馈连接。递归反馈神经网络会像人类一样感知错觉轮廓吗?在这项工作中,我们使用受大脑启发的递归动力学为深度前馈卷积网络配备了工具。该网络首先使用无监督重建目标在自然图像数据集上进行预训练,以使其接触到自然物体轮廓统计信息。然后,添加分类决策头,并在形状分类任务上对模型进行微调:正方形与随机定向诱导形状(无错觉轮廓)。最后,用不熟悉的“错觉轮廓”配置对模型进行测试:诱导形状定向形成错觉正方形。与前馈基线相比,迭代的“预测编码”反馈导致更多的错觉轮廓被分类为物理正方形。可以在模型生成的图像重建的亮度分布中测量到错觉轮廓的感知,这表明模型确实“看到”了错觉。消融研究表明,自然图像预训练和反馈错误校正对于错觉的感知都是至关重要的。最后,我们在更深的网络(VGG)中验证了我们的结论:再次添加相同的预测编码反馈动力学会导致错觉轮廓的感知。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验