Suppr超能文献

具有预测编码反馈动力学的分层神经网络中波传播特性的数学推导。

Mathematical Derivation of Wave Propagation Properties in Hierarchical Neural Networks with Predictive Coding Feedback Dynamics.

机构信息

Institut de Mathématiques de Toulouse, UMR5219, UPS IMT, Université de Toulouse, 31062, Toulouse Cedex 9, France.

ANITI, Université de Toulouse, 31062, Toulouse, France.

出版信息

Bull Math Biol. 2023 Jul 28;85(9):80. doi: 10.1007/s11538-023-01186-9.

Abstract

Sensory perception (e.g., vision) relies on a hierarchy of cortical areas, in which neural activity propagates in both directions, to convey information not only about sensory inputs but also about cognitive states, expectations and predictions. At the macroscopic scale, neurophysiological experiments have described the corresponding neural signals as both forward and backward-travelling waves, sometimes with characteristic oscillatory signatures. It remains unclear, however, how such activity patterns relate to specific functional properties of the perceptual apparatus. Here, we present a mathematical framework, inspired by neural network models of predictive coding, to systematically investigate neural dynamics in a hierarchical perceptual system. We show that stability of the system can be systematically derived from the values of hyper-parameters controlling the different signals (related to bottom-up inputs, top-down prediction and error correction). Similarly, it is possible to determine in which direction, and at what speed neural activity propagates in the system. Different neural assemblies (reflecting distinct eigenvectors of the connectivity matrices) can simultaneously and independently display different properties in terms of stability, propagation speed or direction. We also derive continuous-limit versions of the system, both in time and in neural space. Finally, we analyze the possible influence of transmission delays between layers, and reveal the emergence of oscillations.

摘要

感觉知觉(例如视觉)依赖于皮质区域的层次结构,其中神经活动双向传播,不仅传递关于感觉输入的信息,还传递关于认知状态、期望和预测的信息。在宏观尺度上,神经生理学实验将相应的神经信号描述为前向和后向传播波,有时具有特征性的振荡特征。然而,这种活动模式如何与感知器官的特定功能特性相关仍然不清楚。在这里,我们提出了一个数学框架,该框架受预测编码神经网络模型的启发,系统地研究了分层感知系统中的神经动力学。我们表明,系统的稳定性可以从控制不同信号(与自上而下的输入、自上而下的预测和误差校正有关)的超参数值中系统地推导出来。同样,可以确定神经活动在系统中以什么方向和速度传播。不同的神经集合(反映连接矩阵的不同本征向量)可以同时且独立地在稳定性、传播速度或方向上表现出不同的特性。我们还推导了系统的连续极限版本,无论是在时间上还是在神经空间上。最后,我们分析了层间传输延迟的可能影响,并揭示了振荡的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef01/10382470/d546428b75c6/11538_2023_1186_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验