Ren Fei, Yao Mengli, Li Min, Wang Hui
Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China.
Materials (Basel). 2021 Sep 5;14(17):5080. doi: 10.3390/ma14175080.
Ion implantation is a superior post-synthesis doping technique to tailor the structural properties of materials. Via density functional theory (DFT) calculation and ab-initio molecular dynamics simulations (AIMD) based on stochastic boundary conditions, we systematically investigate the implantation of low energy elements Ga/Ge/As into graphene as well as the electronic, optoelectronic and transport properties. It is found that a single incident Ga, Ge or As atom can substitute a carbon atom of graphene lattice due to the head-on collision as their initial kinetic energies lie in the ranges of 25-26 eV/atom, 22-33 eV/atom and 19-42 eV/atom, respectively. Owing to the different chemical interactions between incident atom and graphene lattice, Ge and As atoms have a wide kinetic energy window for implantation, while Ga is not. Moreover, implantation of Ga/Ge/As into graphene opens up a concentration-dependent bandgap from ~0.1 to ~0.6 eV, enhancing the green and blue light adsorption through optical analysis. Furthermore, the carrier mobility of ion-implanted graphene is lower than pristine graphene; however, it is still almost one order of magnitude higher than silicon semiconductors. These results provide useful guidance for the fabrication of electronic and optoelectronic devices of single-atom-thick two-dimensional materials through the ion implantation technique.
离子注入是一种用于定制材料结构特性的先进合成后掺杂技术。通过基于随机边界条件的密度泛函理论(DFT)计算和从头算分子动力学模拟(AIMD),我们系统地研究了低能元素Ga/Ge/As注入石墨烯以及其电子、光电和输运性质。研究发现,由于正面碰撞,单个入射的Ga、Ge或As原子能够替代石墨烯晶格中的碳原子,因为它们的初始动能分别处于25 - 26 eV/原子、22 - 33 eV/原子和19 - 42 eV/原子的范围内。由于入射原子与石墨烯晶格之间的化学相互作用不同,Ge和As原子具有较宽的注入动能窗口,而Ga则不然。此外,将Ga/Ge/As注入石墨烯会打开一个与浓度相关的带隙,范围从约0.1 eV到约0.6 eV,通过光学分析增强了绿光和蓝光的吸收。此外,离子注入石墨烯的载流子迁移率低于原始石墨烯;然而,它仍然比硅半导体高出近一个数量级。这些结果为通过离子注入技术制造单原子厚二维材料的电子和光电器件提供了有用的指导。