Mukhin Nikolay, Lucklum Ralf
Institute for Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany.
Sensors (Basel). 2021 Sep 6;21(17):5982. doi: 10.3390/s21175982.
The article focuses on a high-resolution ultrasound sensor for real-time monitoring of liquid analytes in cylindrical pipes, tubes, or capillaries. The development of such a sensor faces the challenges of acoustic energy losses, including dissipation at liquid/solid interface and acoustic wave radiation along the pipe. Furthermore, we consider acoustic resonant mode coupling and mode conversion. We show how the concept of phononic crystals can be applied to solve these problems and achieve the maximum theoretically possible Q-factor for resonant ultrasonic sensors. We propose an approach for excitation and measurement of an isolated radial resonant mode with minimal internal losses. The acoustic energy is effectively localized in a narrow probing area due to the introduction of periodically arranged sectioned rings around the tube. We present a sensor design concept, which optimizes the coupling between the tubular resonator and external piezoelectric transducers. We introduce a 2D-phononic crystal in the probing region for this purpose. The Q-factor of the proposed structures show the high prospects for phononic crystal pipe sensors.
本文聚焦于一种用于实时监测圆柱形管道、细管或毛细管中液体分析物的高分辨率超声传感器。开发这样一种传感器面临着声能损失的挑战,包括在液/固界面的耗散以及沿管道的声波辐射。此外,我们还考虑了声共振模式耦合和模式转换。我们展示了如何应用声子晶体的概念来解决这些问题,并为共振超声传感器实现理论上可能的最大品质因数。我们提出了一种用于激发和测量具有最小内部损耗的孤立径向共振模式的方法。由于在管道周围引入了周期性排列的分段环,声能有效地局限在一个狭窄的探测区域内。我们提出了一种传感器设计概念,该概念优化了管状谐振器与外部压电换能器之间的耦合。为此,我们在探测区域引入了二维声子晶体。所提出结构的品质因数显示了声子晶体管道传感器的广阔前景。