Wang Yan-Cheng, Cheng Meng, Witczak-Krempa William, Meng Zi Yang
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China.
Department of Physics, Yale University, New Haven, CT, USA.
Nat Commun. 2021 Sep 9;12(1):5347. doi: 10.1038/s41467-021-25707-z.
The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a [Formula: see text] quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.
二维电子气中分数霍尔电导率的实验发现揭示了新型量子粒子,即任意子,它们不同于玻色子和费米子,因为它们具有分数化的交换统计特性。这些任意子通常在绝缘拓扑相的深处进行研究。自然而然会问,这种分数化是否能在更广泛的范围内被检测到,比如在从常规相到拓扑相的相变附近。为了回答这个问题,我们使用大规模量子蒙特卡罗模拟研究了一种强关联量子相变,该相变发生在一种被称为[公式:见原文]量子自旋液体的拓扑态和一种常规超流体之间。我们的结果表明,量子临界点处的普适电导率变为其在常规绝缘体到超流体转变时值的一个简单分数。此外,在高于转变点的低温下出现了动态自对偶光导率,这表明存在难以捉摸的磁通子粒子。我们的研究为在更广泛的范围内实验检测任意子打开了大门,并且在量子材料、可编程量子模拟器和超冷原子气体的研究中具有重要意义。在后一种情况下,我们讨论了使用当前技术在光学晶格中进行测量的可行性。