Department of Physics, Princeton University, Princeton, NJ, USA.
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA.
Nature. 2021 Jan;589(7841):225-229. doi: 10.1038/s41586-020-03084-9. Epub 2021 Jan 4.
In strongly correlated materials, quasiparticle excitations can carry fractional quantum numbers. An intriguing possibility is the formation of fractionalized, charge-neutral fermions-for example, spinons and fermionic excitons-that result in neutral Fermi surfaces and Landau quantization in an insulator. Although previous experiments in quantum spin liquids, topological Kondo insulators and quantum Hall systems have hinted at charge-neutral Fermi surfaces, evidence for their existence remains inconclusive. Here we report experimental observation of Landau quantization in a two-dimensional insulator, monolayer tungsten ditelluride (WTe), a large-gap topological insulator. Using a detection scheme that avoids edge contributions, we find large quantum oscillations in the material's magnetoresistance, with an onset field as small as about 0.5 tesla. Despite the huge resistance, the oscillation profile, which exhibits many periods, mimics the Shubnikov-de Haas oscillations in metals. At ultralow temperatures, the observed oscillations evolve into discrete peaks near 1.6 tesla, above which the Landau quantized regime is fully developed. Such a low onset field of quantization is comparable to the behaviour of high-mobility conventional two-dimensional electron gases. Our experiments call for further investigation of the unusual ground state of the WTe monolayer, including the influence of device components and the possible existence of mobile fermions and charge-neutral Fermi surfaces inside its insulating gap.
在强关联材料中,准粒子激发可以携带分数量子数。一种有趣的可能性是形成分数化的、中性电荷的费米子,例如自旋子和费米激子,它们导致绝缘体中的中性费米面和朗道量子化。尽管量子自旋液体、拓扑 Kondo 绝缘体和量子霍尔系统中的先前实验已经暗示了中性费米面的存在,但它们的存在证据仍然不确定。在这里,我们报告了在二维绝缘体单层二碲化钨 (WTe) 中朗道量子化的实验观察结果,WTe 是一种大带隙拓扑绝缘体。使用避免边缘贡献的检测方案,我们发现材料磁阻中有大的量子振荡,起始场小至约 0.5 特斯拉。尽管电阻很大,但振荡轮廓与金属中的舒布尼科夫-德哈斯振荡相似,具有多个周期。在超低温下,观察到的振荡演变成 1.6 特斯拉附近的离散峰值,在此之上,朗道量子化区域完全发展。如此低的量子化起始场与高迁移率传统二维电子气体的行为相当。我们的实验呼吁进一步研究 WTe 单层的异常基态,包括器件组件的影响以及其绝缘隙中可能存在的移动费米子和中性费米面。