Suppr超能文献

带有应用于纵向 CD4 计数数据的加法分位数混合效应模型。

Additive quantile mixed effects modelling with application to longitudinal CD4 count data.

机构信息

School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.

Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.

出版信息

Sci Rep. 2021 Sep 9;11(1):17945. doi: 10.1038/s41598-021-97114-9.

Abstract

Quantile regression offers an invaluable tool to discern effects that would be missed by other conventional regression models, which are solely based on modeling conditional mean. Quantile regression for mixed-effects models has become practical for longitudinal data analysis due to the recent computational advances and the ready availability of efficient linear programming algorithms. Recently, quantile regression has also been extended to additive mixed-effects models, providing an efficient and flexible framework for nonparametric as well as parametric longitudinal forms of data analysis focused on features of the outcome beyond its central tendency. This study applies the additive quantile mixed model to analyze the longitudinal CD4 count of HIV-infected patients enrolled in a follow-up study at the Centre of the AIDS Programme of Research in South Africa. The objective of the study is to justify how the procedure developed can obtain robust nonlinear and linear effects at different conditional distribution locations. With respect to time and baseline BMI effect, the study shows a significant nonlinear effect on CD4 count across all fitted quantiles. Furthermore, across all fitted quantiles, the effect of the parametric covariates of baseline viral load, place of residence, and the number of sexual partners was found to be major significant factors on the progression of patients' CD4 count who had been initiated on the Highly Active Antiretroviral Therapy study.

摘要

分位数回归为辨别其他仅基于条件均值建模的传统回归模型可能错过的影响提供了一种非常有价值的工具。由于最近的计算进展和高效线性规划算法的广泛应用,混合效应模型的分位数回归已经成为纵向数据分析的实用方法。最近,分位数回归也已经扩展到了可加混合效应模型,为非参数和参数纵向数据分析提供了一个高效灵活的框架,重点关注结果的中心趋势以外的特征。本研究将可加分位数混合模型应用于分析在南非艾滋病研究计划中心参与随访研究的 HIV 感染患者的纵向 CD4 计数。该研究的目的是证明所开发的程序如何在不同的条件分布位置获得稳健的非线性和线性效应。就时间和基线 BMI 效应而言,研究表明在所有拟合分位数上 CD4 计数存在显著的非线性效应。此外,在所有拟合分位数上,发现基线病毒载量、居住地和性伴侣数量等参数协变量对开始接受高效抗逆转录病毒治疗研究的患者 CD4 计数的进展具有重要影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/8429740/01d56de035c8/41598_2021_97114_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验