Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.
Cell. 2021 Sep 16;184(19):4919-4938.e22. doi: 10.1016/j.cell.2021.08.028. Epub 2021 Sep 9.
Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.
替代或编辑致病突变在治疗许多人类疾病方面具有巨大的潜力。然而,将治疗性遗传修饰物递送到体内的特定细胞一直具有挑战性,特别是在骨骼肌等大型、解剖分布的组织中。在这里,我们建立了一种在体内进化和严格选择腺相关病毒(AAV)衣壳变体的策略,使它们能够有效地递送到所需的组织。使用这种方法,我们鉴定了一类含有 RGD 基序的衣壳,这些衣壳在静脉注射到小鼠和非人类灵长类动物后,具有优越的肌肉转导效率和选择性。与两种遗传性肌肉疾病的小鼠模型中的天然 AAV 衣壳相比,这些经过工程改造的载体具有显著增强的效力和治疗效果。我们选择方法的顶级衣壳变体在各种近交系小鼠品系中显示出跨种传递的保守效力,在食蟹猴和人原代肌管中也是如此,其转导依赖于靶细胞表达的整合素异二聚体。