Suppr超能文献

在一项测试布美他尼治疗自闭症谱系障碍的随机对照试验中,通过静息态脑电图和临床严重程度预测行为改善情况。

Prediction of Behavioral Improvement Through Resting-State Electroencephalography and Clinical Severity in a Randomized Controlled Trial Testing Bumetanide in Autism Spectrum Disorder.

作者信息

Juarez-Martinez Erika L, Sprengers Jan J, Cristian Gianina, Oranje Bob, van Andel Dorinde M, Avramiea Arthur-Ervin, Simpraga Sonja, Houtman Simon J, Hardstone Richard, Gerver Cathalijn, Jan van der Wilt Gert, Mansvelder Huibert D, Eijkemans Marinus J C, Linkenkaer-Hansen Klaus, Bruining Hilgo

机构信息

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands; NBT Analytics BV, Amsterdam, The Netherlands; Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Mar;8(3):251-261. doi: 10.1016/j.bpsc.2021.08.009. Epub 2021 Sep 8.

Abstract

BACKGROUND

Mechanism-based treatments such as bumetanide are being repurposed for autism spectrum disorder. We recently reported beneficial effects on repetitive behavioral symptoms that might be related to regulating excitation-inhibition (E/I) balance in the brain. Here, we tested the neurophysiological effects of bumetanide and the relationship to clinical outcome variability and investigated the potential for machine learning-based predictions of meaningful clinical improvement.

METHODS

Using modified linear mixed models applied to intention-to-treat population, we analyzed E/I-sensitive electroencephalography (EEG) measures before and after 91 days of treatment in the double-blind, randomized, placebo-controlled Bumetanide in Autism Medication and Biomarker study. Resting-state EEG of 82 subjects out of 92 participants (7-15 years) were available. Alpha frequency band absolute and relative power, central frequency, long-range temporal correlations, and functional E/I ratio treatment effects were related to the Repetitive Behavior Scale-Revised (RBS-R) and the Social Responsiveness Scale 2 as clinical outcomes.

RESULTS

We observed superior bumetanide effects on EEG, reflected in increased absolute and relative alpha power and functional E/I ratio and in decreased central frequency. Associations between EEG and clinical outcome change were restricted to subgroups with medium to high RBS-R improvement. Using machine learning, medium and high RBS-R improvement could be predicted by baseline RBS-R score and EEG measures with 80% and 92% accuracy, respectively.

CONCLUSIONS

Bumetanide exerts neurophysiological effects related to clinical changes in more responsive subsets, in whom prediction of improvement was feasible through EEG and clinical measures.

摘要

背景

基于机制的治疗方法,如布美他尼,正被重新用于治疗自闭症谱系障碍。我们最近报告了其对重复行为症状的有益影响,这可能与调节大脑中的兴奋-抑制(E/I)平衡有关。在此,我们测试了布美他尼的神经生理效应及其与临床结果变异性的关系,并研究了基于机器学习预测有意义的临床改善的可能性。

方法

在自闭症药物治疗和生物标志物的双盲、随机、安慰剂对照布美他尼研究中,我们使用适用于意向性治疗人群的改良线性混合模型,分析了91天治疗前后对E/I敏感的脑电图(EEG)测量结果。92名参与者(7至15岁)中有82名受试者的静息态EEG数据可用。α频段绝对和相对功率、中心频率、长程时间相关性以及功能性E/I比治疗效果与重复行为量表修订版(RBS-R)和社会反应量表2作为临床结果相关。

结果

我们观察到布美他尼对EEG有显著影响,表现为绝对和相对α功率增加、功能性E/I比增加以及中心频率降低。EEG与临床结果变化之间的关联仅限于RBS-R改善程度为中度至高度的亚组。使用机器学习,RBS-R改善程度为中度和高度的情况可分别通过基线RBS-R评分和EEG测量进行预测,准确率分别为80%和92%。

结论

布美他尼对反应性更强的亚组产生与临床变化相关的神经生理效应,在这些亚组中,通过EEG和临床测量预测改善情况是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验