Google Research, Google Applied Science, Mountain View, CA, 94043.
Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2106042118.
The quest to identify materials with tailored properties is increasingly expanding into high-order composition spaces, with a corresponding combinatorial explosion in the number of candidate materials. A key challenge is to discover regions in composition space where materials have novel properties. Traditional predictive models for material properties are not accurate enough to guide the search. Herein, we use high-throughput measurements of optical properties to identify novel regions in three-cation metal oxide composition spaces by identifying compositions whose optical trends cannot be explained by simple phase mixtures. We screen 376,752 distinct compositions from 108 three-cation oxide systems based on the cation elements Mg, Fe, Co, Ni, Cu, Y, In, Sn, Ce, and Ta. Data models for candidate phase diagrams and three-cation compositions with emergent optical properties guide the discovery of materials with complex phase-dependent properties, as demonstrated by the discovery of a Co-Ta-Sn substitutional alloy oxide with tunable transparency, catalytic activity, and stability in strong acid electrolytes. These results required close coupling of data validation to experiment design to generate a reliable end-to-end high-throughput workflow for accelerating scientific discovery.
探索具有定制属性的材料的过程正在不断扩展到更高阶的成分空间,候选材料的数量也相应呈组合爆炸式增长。一个关键的挑战是发现材料具有新颖特性的成分空间区域。传统的材料性能预测模型不够准确,无法指导搜索。在此,我们使用光学性质的高通量测量来通过识别那些光学趋势不能用简单的相混合物来解释的成分来识别三价金属氧化物成分空间中的新区域。我们基于阳离子元素 Mg、Fe、Co、Ni、Cu、Y、In、Sn、Ce 和 Ta,从 108 个三价氧化物系统中筛选了 376,752 种不同的成分。候选相图和具有新兴光学性质的三价成分的数据模型指导了具有复杂相依赖性性质的材料的发现,这一点在 Co-Ta-Sn 取代合金氧化物的发现中得到了证明,该氧化物在强酸电解质中具有可调透明度、催化活性和稳定性。这些结果需要将数据验证与实验设计紧密结合,以生成可靠的端到端高通量工作流程,从而加速科学发现。