Dave Adarsh, Mitchell Jared, Burke Sven, Lin Hongyi, Whitacre Jay, Viswanathan Venkatasubramanian
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Nat Commun. 2022 Sep 27;13(1):5454. doi: 10.1038/s41467-022-32938-1.
Developing high-energy and efficient battery technologies is a crucial aspect of advancing the electrification of transportation and aviation. However, battery innovations can take years to deliver. In the case of non-aqueous battery electrolyte solutions, the many design variables in selecting multiple solvents, salts and their relative ratios make electrolyte optimization time-consuming and laborious. To overcome these issues, we propose in this work an experimental design that couples robotics (a custom-built automated experiment named "Clio") to machine-learning (a Bayesian optimization-based experiment planner named "Dragonfly"). An autonomous optimization of the electrolyte conductivity over a single-salt and ternary solvent design space identifies six fast-charging non-aqueous electrolyte solutions in two work-days and forty-two experiments. This result represents a six-fold time acceleration compared to a random search performed by the same automated experiment. To validate the practical use of these electrolytes, we tested them in a 220 mAh graphite∣∣LiNiMnCoO pouch cell configuration. All the pouch cells containing the robot-developed electrolytes demonstrate improved fast-charging capability against a baseline experiment that uses a non-aqueous electrolyte solution selected a priori from the design space.
开发高能效电池技术是推进交通运输和航空电气化的关键环节。然而,电池创新可能需要数年时间才能实现。就非水电池电解质溶液而言,在选择多种溶剂、盐及其相对比例时存在诸多设计变量,这使得电解质优化既耗时又费力。为克服这些问题,我们在这项工作中提出一种实验设计,将机器人技术(一个名为“Clio”的定制自动化实验)与机器学习(一个名为“Dragonfly”的基于贝叶斯优化的实验规划器)相结合。在单盐和三元溶剂设计空间上对电解质电导率进行自主优化,在两个工作日内通过42次实验确定了六种快速充电非水电解质溶液。与同一自动化实验进行的随机搜索相比,这一结果使时间加速了六倍。为验证这些电解质的实际应用效果,我们在220 mAh石墨∣∣LiNiMnCoO软包电池配置中对其进行了测试。所有包含机器人研发电解质的软包电池,与使用从设计空间中预先选定的非水电解质溶液的基线实验相比,均展现出了更好的快速充电能力。