Zheng Yongjia, Kumamoto Akihito, Hisama Kaoru, Otsuka Keigo, Wickerson Grace, Sato Yuta, Liu Ming, Inoue Taiki, Chiashi Shohei, Tang Dai-Ming, Zhang Qiang, Anisimov Anton, Kauppinen Esko I, Li Yan, Suenaga Kazu, Ikuhara Yuichi, Maruyama Shigeo, Xiang Rong
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2107295118.
We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.
我们最近合成了一维(1D)范德华异质结构,其中不同的原子层(例如,氮化硼或二硫化钼)无缝包裹在单壁碳纳米管(SWCNT)周围,并形成同轴的、结晶的异质纳米管。一维异质结构的生长过程是非传统的——不同的晶体需要在高度弯曲的表面上成核,并逐层延伸纳米管——因此了解其形成机制具有重要的基础研究意义。在这项工作中,我们对化学气相沉积(CVD)合成的一维异质结构的结构细节和形成机制进行了后续的全面研究。使用透射电子显微镜(TEM)清晰地揭示了边缘结构、成核位点和晶体外延关系。这是通过在与CVD兼容的Si/SiO TEM网格上直接合成异质纳米管来实现的,这使得能够无转移且无损地获取许多内在结构细节。特别是,我们区分了不同形状的氮化硼纳米管(BNNT)边缘,通过在同一位置的电子衍射证实,这些边缘与其自身的手性角和极性严格相关。我们还证明了表面清洁度和隔离对于形成完美的一维异质结构的重要性。此外,我们阐明了SWCNT模板与BNNT晶体之间的手性相关性。这项工作不仅提供了对这种一维异质结构材料组的深入理解,而且从更一般的角度来看,还为在高度弯曲(半径为几纳米)的原子基底上的晶体生长提供了有趣的研究。