Suppr超能文献

肌球蛋白基于肌动蛋白的滑行速度取决于附着和解离的动力学,当肌动蛋白上的肌球蛋白结合位点饱和时达到最大值。

Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate.

机构信息

Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.

Department of Biomedical Engineering, University of Nevada, Reno, Nevada, USA.

出版信息

J Biol Chem. 2021 Nov;297(5):101178. doi: 10.1016/j.jbc.2021.101178. Epub 2021 Sep 9.

Abstract

Molecular motors such as kinesin and myosin often work in groups to generate the directed movements and forces critical for many biological processes. Although much is known about how individual motors generate force and movement, surprisingly, little is known about the mechanisms underlying the macroscopic mechanics generated by multiple motors. For example, the observation that a saturating number, N, of myosin heads move an actin filament at a rate that is influenced by actin-myosin attachment and detachment kinetics is accounted for neither experimentally nor theoretically. To better understand the emergent mechanics of actin-myosin mechanochemistry, we use an in vitro motility assay to measure and correlate the N-dependence of actin sliding velocities, actin-activated ATPase activity, force generation against a mechanical load, and the calcium sensitivity of thin filament velocities. Our results show that both velocity and ATPase activity are strain dependent and that velocity becomes maximized with the saturation of myosin-binding sites on actin at a value that is 40% dependent on attachment kinetics and 60% dependent on detachment kinetics. These results support a chemical thermodynamic model for ensemble motor mechanochemistry and imply molecularly explicit mechanisms within this framework, challenging the assumption of independent force generation.

摘要

分子马达(如驱动蛋白和肌球蛋白)通常协同工作,产生定向运动和力,这对许多生物过程至关重要。尽管人们已经了解了单个马达如何产生力和运动,但令人惊讶的是,对于多个马达产生的宏观力学背后的机制知之甚少。例如,观察到饱和数量 N 的肌球蛋白头部以受肌球蛋白-肌动蛋白附着和解离动力学影响的速度移动肌动蛋白丝,这既没有实验也没有理论解释。为了更好地理解肌动球蛋白化学机械的涌现力学,我们使用体外运动分析来测量和关联肌动蛋白滑动速度、肌动蛋白激活的 ATP 酶活性、抵抗机械负载的力生成以及细丝速度的钙敏感性的 N 依赖性。我们的结果表明,速度和 ATP 酶活性都与应变有关,并且在肌动蛋白上的肌球蛋白结合位点饱和时,速度达到最大值,该值 40%依赖于附着动力学,60%依赖于脱离动力学。这些结果支持了用于集合马达化学机械的化学热力学模型,并暗示了该框架内的分子明确机制,挑战了独立力生成的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e526/8560993/3dbd2a44a0d9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验