Suppr超能文献

利用多方面的 CoO/ZnO 空心纳米结构高效检测危险 HS 气体。

Efficient detection of hazardous HS gas using multifaceted CoO/ZnO hollow nanostructures.

机构信息

School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

出版信息

Chemosphere. 2022 Jan;287(Pt 2):132178. doi: 10.1016/j.chemosphere.2021.132178. Epub 2021 Sep 8.

Abstract

The rapid increases in environmental hazardous gases have laid dangerous effects on human health. The detection of such pollutants gases is mandatory using various optimal techniques. In this paper, porous multifaceted CoO/ZnO nanostructures are synthesized by pyrolyzing sacrificial template of core-shell double zeolitic imidazolate frameworks (ZIFs) for gas sensing applications. The fabricated exhibit superior gas sensor response, high selectivity, fast response/recovery times, and remarkable stability and sensitivity to HS gas. In particular, the multifaceted CoO/ZnO nanostructures show a maximum response of 147 at 100 ppm of HS under optimum conditions. The remarkable gas sensing performances are mainly ascribed to high porosity, wide surface area multifaceted nanostructures, presence of heterojunctions and catalytic activity of ZnO and CoO, which are beneficial for HS gas sensors industry.

摘要

环境有害气体的迅速增加对人类健康造成了危险的影响。必须使用各种最佳技术来检测这些污染物气体。在本文中,通过热解牺牲模板的核壳双沸石咪唑酯骨架(ZIFs)合成了多孔多面 CoO/ZnO 纳米结构,用于气体传感应用。所制备的材料表现出优越的气体传感器响应、高选择性、快速的响应/恢复时间,以及对 HS 气体的显著稳定性和灵敏度。特别是,在最佳条件下,多面 CoO/ZnO 纳米结构在 100 ppm 的 HS 下表现出最大的 147 的响应。显著的气体传感性能主要归因于高孔隙率、宽比表面积的多面纳米结构、异质结的存在以及 ZnO 和 CoO 的催化活性,这有利于 HS 气体传感器行业。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验