Zhang Xianfeng, Du Wenjie, Li Qian, Lv Changpeng
Anhui Provincial Engineering Laboratory of Silicon-based Materials, School of Material and Chemical Engineering, Bengbu University Bengbu 233030 People's Republic of China
RSC Adv. 2022 Jul 18;12(32):20618-20627. doi: 10.1039/d2ra02609k. eCollection 2022 Jul 14.
This work proposes precursor pyrolysis, ultrasonic exfoliation and hydrothermal methods as well as high-temperature calcination strategies to fabricate heterostructured g-CN/ZnO composites with excellent ethanol vapour sensing properties. The structure, composition and morphology of the as-prepared g-CN/ZnO composites were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Then, the sensing properties of the g-CN/ZnO composites for ethanol (CHOH) were studied, and g-CN doping with different mass ratios was used to control the gas-sensing properties of the composites. Compared with pure ZnO and g-CN, the performance of g-CN with 1% doping content is the best, and the gas sensing activity of the 1% g-CN/ZnO composite is greatly improved at the optimal working temperature (280 °C). The response to 100 ppm ethanol reaches 81.4, which is 3.7 times that of the pure ZnO-based sensor under the same conditions. In addition, the sensor has good selectivity as well as fast response and recovery speeds (24 s and 63 s, respectively). Finally, a reasonable gas sensing enhancement mechanism is proposed, and it is believed that the constructed g-CN/ZnO micro flower-like heterostructure and the distinct positions of the valence and conduction bands of ZnO and g-CN lead to the obtained sensor exhibiting a large specific surface area and increased conductivity, thereby improving the g-CN/ZnO-based sensor sensing performance.
这项工作提出了前驱体热解、超声剥离和水热法以及高温煅烧策略,以制备具有优异乙醇气敏性能的异质结构g-CN/ZnO复合材料。使用X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)对所制备的g-CN/ZnO复合材料的结构、组成和形貌进行了表征。然后,研究了g-CN/ZnO复合材料对乙醇(CHOH)的传感性能,并使用不同质量比的g-CN掺杂来控制复合材料的气敏性能。与纯ZnO和g-CN相比,掺杂含量为1%的g-CN性能最佳,在最佳工作温度(280°C)下,1% g-CN/ZnO复合材料的气敏活性大大提高。对100 ppm乙醇的响应达到81.4,是相同条件下纯ZnO基传感器的3.7倍。此外,该传感器具有良好的选择性以及快速的响应和恢复速度(分别为24 s和63 s)。最后,提出了一种合理的气敏增强机制,认为构建的g-CN/ZnO微花状异质结构以及ZnO和g-CN价带和导带的不同位置导致所获得的传感器具有大的比表面积和增加的电导率,从而提高了基于g-CN/ZnO的传感器的传感性能。