Suppr超能文献

儿童白内障患者手术决策模型的应用:一项基于真实世界数据的研究

Application of Surgical Decision Model for Patients With Childhood Cataract: A Study Based on Real World Data.

作者信息

Chen Jingjing, Xiang Yifan, Li Longhui, Xu Andi, Hu Weiling, Lin Zhuoling, Xu Fabao, Lin Duoru, Chen Weirong, Lin Haotian

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Bioeng Biotechnol. 2021 Aug 26;9:657866. doi: 10.3389/fbioe.2021.657866. eCollection 2021.

Abstract

Reliable validated methods are necessary to verify the performance of diagnosis and therapy-assisted models in clinical practice. However, some validated results have research bias and may not reflect the results of real-world application. In addition, the conduct of clinical trials has executive risks for the indeterminate effectiveness of models and it is challenging to finish validated clinical trials of rare diseases. Real world data (RWD) can probably solve this problem. In our study, we collected RWD from 251 patients with a rare disease, childhood cataract (CC) and conducted a retrospective study to validate the CC surgical decision model. The consistency of the real surgical type and recommended surgical type was 94.16%. In the cataract extraction (CE) group, the model recommended the same surgical type for 84.48% of eyes, but the model advised conducting cataract extraction and primary intraocular lens implantation (CE + IOL) surgery in 15.52% of eyes, which was different from the real-world choices. In the CE + IOL group, the model recommended the same surgical type for 100% of eyes. The real-recommended matched rates were 94.22% in the eyes of bilateral patients and 90.38% in the eyes of unilateral patients. Our study is the first to apply RWD to complete a retrospective study evaluating a clinical model, and the results indicate the availability and feasibility of applying RWD in model validation and serve guidance for intelligent model evaluation for rare diseases.

摘要

在临床实践中,需要可靠的验证方法来验证诊断和治疗辅助模型的性能。然而,一些验证结果存在研究偏差,可能无法反映实际应用的结果。此外,由于模型有效性不确定,开展临床试验存在执行风险,完成罕见病的验证性临床试验也具有挑战性。真实世界数据(RWD)或许可以解决这一问题。在我们的研究中,我们收集了251例罕见病——儿童白内障(CC)患者的真实世界数据,并进行了一项回顾性研究以验证CC手术决策模型。实际手术类型与推荐手术类型的一致性为94.16%。在白内障摘除(CE)组中,该模型对84.48%的患眼推荐了相同的手术类型,但对15.52%的患眼建议进行白内障摘除联合一期人工晶状体植入(CE + IOL)手术,这与实际选择不同。在CE + IOL组中,该模型对100%的患眼推荐了相同的手术类型。双侧患者患眼中实际与推荐的匹配率为94.22%,单侧患者患眼中为90.38%。我们的研究首次应用真实世界数据完成了一项评估临床模型的回顾性研究,结果表明了在模型验证中应用真实世界数据的可用性和可行性,并为罕见病智能模型评估提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f11f/8427305/30b67e8c096d/fbioe-09-657866-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验