Li Menghao, Yang Xuming, Wu Duojie, Zhang Qing, Wei Xianbin, Cheng Yifeng, Gu M Danny
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):66819-66825. doi: 10.1021/acsami.3c11673. Epub 2023 Oct 13.
Lithium (Li) metal is considered as the "holy grail" of anode materials for next-generation high energy batteries. However, notorious dendrite growth and interfacial instability could induce irreversible capacity loss and safety issues, limiting the practical application of Li metal anodes. Herein, we develop a novel approach to construct a borate-based artificial solid-electrolyte interphase (designated as B-SEI) through the reaction of metallic Li with triethylamine borane (TEAB). According to our cryogenic electron microscopy (Cryo-EM) characterization results, the artificial SEI adopts a glass-crystal bilayer structure, which facilitates uniform Li-ion transport and inhibits dendrite growth during Li plating. Benefiting from such an artificial SEI, the Li anode delivers an improved rate performance and prolonged cycle life. The symmetric Li/B-SEI||Li/B-SEI cell can maintain stable cycling for 700 h at a high current density of 3 mA cm. The full-cell pairing Li/B-SEI with LiFePO only exhibits minimal capacity decay after 500 cycles in a conventional carbonate-based electrolyte. This work demonstrates the feasibility of building a boride-based artificial SEI to stabilize the Li metal anode based on microscopic characterization results and comprehensive electrochemical data, which represents a promising avenue to develop practical Li metal batteries.
锂(Li)金属被视为下一代高能电池负极材料的“圣杯”。然而,臭名昭著的枝晶生长和界面不稳定性会导致不可逆的容量损失和安全问题,限制了锂金属负极的实际应用。在此,我们开发了一种新颖的方法,通过金属锂与三乙胺硼烷(TEAB)反应构建基于硼酸盐的人工固体电解质界面(称为B-SEI)。根据我们的低温电子显微镜(Cryo-EM)表征结果,人工SEI采用玻璃-晶体双层结构,这有利于锂离子的均匀传输,并在锂电镀过程中抑制枝晶生长。受益于这种人工SEI,锂负极具有更好的倍率性能和更长的循环寿命。对称的Li/B-SEI||Li/B-SEI电池在3 mA cm的高电流密度下可保持700 h的稳定循环。在传统的碳酸盐基电解质中,Li/B-SEI与LiFePO配对的全电池在500次循环后仅表现出最小的容量衰减。这项工作基于微观表征结果和综合电化学数据,证明了构建基于硼化物的人工SEI以稳定锂金属负极的可行性,这代表了开发实用锂金属电池的一条有前途的途径。