Suppr超能文献

微流控流中基于生物物理单细胞特征的非侵入性和无标记的人自然杀伤细胞亚类的识别。

Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow.

机构信息

Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.

Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.

出版信息

Lab Chip. 2021 Oct 26;21(21):4144-4154. doi: 10.1039/d1lc00651g.

Abstract

Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56 and mature cytotoxic NK CD56. Therefore, the ability to discriminate CD56 from CD56 could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56 to CD56. We trained our ML algorithm with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56 to CD56 and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy.

摘要

自然杀伤 (NK) 细胞被认为是创新治疗的首选候选者,可分为两个亚类:不成熟的调节性 NK CD56 和成熟的细胞毒性 NK CD56。因此,区分 CD56 和 CD56 的能力可能非常有用,因为它们具有更高的细胞毒性。如今,NK 细胞的分类通常通过基于表面受体表达的细胞计量分析来进行。在这里,我们通过光散射和机器学习 (ML) 的组合,展示了一种用于 NK 细胞亚类分类的在线、无标记和非侵入性的生物物理分析。在这方面,为了识别相关的生物物理细胞特征,我们用白细胞介素 15 刺激 NK 细胞,诱导 CD56 向 CD56 的亚类转变。我们用分类 NK 细胞亚类(≥86%的准确率)对我们的 ML 算法进行了训练。接下来,我们将我们的 NK 细胞分类算法应用于随时间刺激的细胞,以研究 CD56 向 CD56 的转变及其生物物理特征的变化。最后,我们在几个个体样本上测试了我们的方法,突出了我们测量方法的潜力。我们展示了一种基于生物物理特征的 NK 细胞亚类的无标记识别方法,该方法可应用于细胞生物学和细胞治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验