Suppr超能文献

基于智能手机的机器学习分类的纸质微流控细胞层析术上用于自然杀伤细胞检测、定量和亚群鉴定。

Natural killer cell detection, quantification, and subpopulation identification on paper microfluidic cell chromatography using smartphone-based machine learning classification.

机构信息

Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.

Department of Surgery, The University of Arizona College of Medicine, Tucson, AZ, 85721, United States.

出版信息

Biosens Bioelectron. 2022 Mar 15;200:113916. doi: 10.1016/j.bios.2021.113916. Epub 2021 Dec 24.

Abstract

Natural killer (NK) cells are immune cells that defend against viral infections and cancer and are used in cancer immunotherapies. Subpopulations of NK cells include CD56 and CD56 which either produce cytokines or cytotoxically kill cells directly. The absolute number and proportion of these cells in peripheral blood are tied to proper immune function. Current methods of cytokine detection and proportion of NK cell subpopulations require fluorescent dyes and highly specialized equipment, e.g., flow cytometry, thus rapid cell quantification and subpopulation analysis are needed in the clinical setting. Here, a smartphone-based device and a two-component paper microfluidic chip were used towards identifying NK cell subpopulation and inflammatory markers. One unit measured flow velocity via smartphone-captured video, determining cytokine (IL-2) and total NK cell concentrations in undiluted buffy coat blood samples. The other, single flow lane unit performs spatial separation of CD56 and CD56 and cells over its length using differential binding of anti-CD56 nanoparticles. A smartphone microscope combined with cloud-based machine learning predictive modeling (utilizing a random forest classification algorithm) analyzed both flow data and NK cell subpopulation differentiation. Limits of detection for cytokine and cell concentrations were 98 IU/mL and 68 cells/mL, respectively, and cell subpopulation analysis showed 89% accuracy.

摘要

自然杀伤 (NK) 细胞是一种免疫细胞,可抵御病毒感染和癌症,并用于癌症免疫疗法。NK 细胞的亚群包括 CD56 和 CD56,它们要么产生细胞因子,要么直接细胞毒性杀伤细胞。外周血中这些细胞的绝对数量和比例与适当的免疫功能有关。目前检测细胞因子和 NK 细胞亚群比例的方法需要荧光染料和高度专业化的设备,例如流式细胞术,因此在临床环境中需要快速的细胞定量和亚群分析。在这里,我们使用基于智能手机的设备和两部分纸质微流控芯片来鉴定 NK 细胞亚群和炎症标志物。一个单元通过智能手机捕获的视频测量流速,从而确定未稀释的缓冲层血液样本中的细胞因子(IL-2)和总 NK 细胞浓度。另一个单元,即单个流动通道单元,使用抗 CD56 纳米颗粒的差异结合在其长度上对 CD56 和 CD56 进行空间分离。智能手机显微镜与基于云的机器学习预测模型(利用随机森林分类算法)相结合,分析了流量数据和 NK 细胞亚群分化。细胞因子和细胞浓度的检测限分别为 98IU/mL 和 68 个/mL,细胞亚群分析的准确率为 89%。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验