Chala Soressa Abera, Tsai Meng-Che, Olbasa Bizualem Wakuma, Lakshmanan Keseven, Huang Wei-Hsiang, Su Wei-Nien, Liao Yen-Fa, Lee Jyh-Fu, Dai Hongjie, Hwang Bing Joe
NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
Sustainable Energy Development Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
ACS Nano. 2021 Sep 28;15(9):14996-15006. doi: 10.1021/acsnano.1c05250. Epub 2021 Sep 13.
The active phase and catalytic mechanisms of Ni-based layered double hydroxide (LDH) materials for oxygen evolution reaction (OER) have no common consensus and remain controversial. Moreover, engineering the site activity and the number of active sites of LDHs is an efficient approach to advance the OER activity, as the thickness and stacking structure of the LDHs layer limit the catalytic activity. This work presents an interesting approach of tuning the site activity and number of active sites of NiMn-LDHs, which exhibit the superior OER performance (onset overpotential of 0.17 V and overpotential of 0.24 V at 10 mA cm). The fundamental mechanistic insights and active phases during the OER process are characterized by techniques along with the computational density functional theory calculations, revealing that the Ni site constitutes the OER activity and the dynamically generated NiOOH moiety is the active phase. We also prove that Ni sites undergo a reversible oxidation state under the working conditions to create active NiOOH species which catalyze the water to generate oxygen. These findings suggest that the Ni(III) phase in NiMn-LDHs is the OER active site and Mn promotes the electronic properties of Ni sites. Utilizing / techniques and theoretical calculation, we find that the intercalation of guest anions allows the expansion of the LDH layers and keeps the active NiOOH species under the oxidation state of +3 electron coupling, which ultimately tunes the site populations and site activity toward the superior OER activity, respectively. This work thus targets to provide insight into strategies to design the next generation of highly active catalysts for water electrolysis and fuel cell technologies.
镍基层状双氢氧化物(LDH)材料用于析氧反应(OER)的活性阶段和催化机制尚无共识,仍存在争议。此外,由于LDH层的厚度和堆叠结构限制了催化活性,调控LDH的位点活性和活性位点数量是提高OER活性的有效方法。这项工作提出了一种有趣的方法来调控NiMn-LDH的位点活性和活性位点数量,该材料表现出优异的OER性能(在10 mA cm时起始过电位为0.17 V,过电位为0.24 V)。通过技术手段结合计算密度泛函理论计算对OER过程中的基本机理和活性阶段进行了表征,揭示了Ni位点构成OER活性,动态生成的NiOOH部分是活性相。我们还证明,在工作条件下,Ni位点经历可逆氧化态以产生活性NiOOH物种,该物种催化水生成氧气。这些发现表明,NiMn-LDH中的Ni(III)相是OER活性位点,Mn促进了Ni位点的电子性质。利用技术手段和理论计算,我们发现客体阴离子的插入使LDH层膨胀,并使活性NiOOH物种保持在+3电子耦合的氧化态,这最终分别调整了位点数量和位点活性,使其具有优异的OER活性。因此,这项工作旨在深入了解设计下一代用于水电解和燃料电池技术的高活性催化剂的策略。