Suppr超能文献

多维零膨胀等级反应模型在有序症状数据中的应用。

A multidimensional zero-inflated graded response model for ordinal symptom data.

机构信息

Department of Psychology and Neuroscience, Boston College.

Department of Sociology, Vrije University Amsterdam.

出版信息

Psychol Methods. 2022 Apr;27(2):261-279. doi: 10.1037/met0000395. Epub 2021 Sep 13.

Abstract

Zero responses and their equivalents-for example, never, none, not at all-are commonly observed on measures of psychopathology inquiring about symptom frequencies, particularly when these measures are administered to community samples. Measurement researchers typically accommodate multivariate zero inflation by including a class of respondents who endorse zero for all symptoms. While this latent class approach accounts for test-level zero inflation (i.e., a proportion of individuals who do not experience any of the symptoms), it may be overly restrictive on questionnaires comprising items of differing severity. For example, an item about suicidal ideation is likely to exhibit a much higher degree of zero inflation than an item about low energy. Existing models do not account for this variability. We propose a multidimensional zero-inflated graded response model (MZI-GRM) as a more flexible approach for modeling zero inflation on questionnaires. According to the model, two distinct but correlated latent variables underlie ordinal item responses; one represents susceptibility to the construct, whereas the other represents severity. As a motivating example, we show how the MZI-GRM can be fit to data from the PHQ-9, a common depression screener. Results suggest that the MZI-GRM is better able to capture zero inflation across items than existing alternative models. Further, we find support for a multidimensional model that allows distinct but correlated latent variables to underlie each response process. Some items better measure susceptibility to depression (symptom presence), whereas others better capture severity of depression (symptom frequency). Implications for scale development and scoring are discussed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

零响应及其等效项——例如从不、无、根本不——在调查症状频率的精神病理学测量中经常被观察到,尤其是当这些测量被用于社区样本时。测量研究人员通常通过包含一类对所有症状都表示为零的受访者来适应多元零膨胀。虽然这种潜在类别方法解释了测试级别的零膨胀(即,没有经历任何症状的个体比例),但它可能对由不同严重程度的项目组成的问卷过于限制。例如,关于自杀意念的项目比关于低能量的项目更有可能表现出更高程度的零膨胀。现有的模型没有考虑到这种可变性。我们提出了多维零膨胀分级反应模型(MZI-GRM),作为一种更灵活的方法来对问卷中的零膨胀进行建模。根据该模型,有序项目反应由两个不同但相关的潜在变量来表示;一个表示对结构的易感性,另一个表示严重程度。作为一个激励性的例子,我们展示了 MZI-GRM 如何适用于 PHQ-9 的数据,PHQ-9 是一种常见的抑郁筛查工具。结果表明,MZI-GRM 能够比现有的替代模型更好地捕捉到项目之间的零膨胀。此外,我们发现支持一个多维模型,允许不同但相关的潜在变量来为每个反应过程提供基础。一些项目更好地衡量对抑郁的易感性(症状存在),而另一些项目则更好地捕捉抑郁的严重程度(症状频率)。讨论了对量表开发和评分的影响。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验