McCombe Kris D, Craig Stephanie G, Viratham Pulsawatdi Amélie, Quezada-Marín Javier I, Hagan Matthew, Rajendran Simon, Humphries Matthew P, Bingham Victoria, Salto-Tellez Manuel, Gault Richard, James Jacqueline A
Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
Belfast Health and Social Care Trust, Belfast, Northern Ireland.
Comput Struct Biotechnol J. 2021 Aug 26;19:4840-4853. doi: 10.1016/j.csbj.2021.08.033. eCollection 2021.
The growth of digital pathology over the past decade has opened new research pathways and insights in cancer prediction and prognosis. In particular, there has been a surge in deep learning and computer vision techniques to analyse digital images. Common practice in this area is to use image pre-processing and augmentation to prevent bias and overfitting, creating a more robust deep learning model. This generally requires consultation of documentation for multiple coding libraries, as well as trial and error to ensure that the techniques used on the images are appropriate. Herein we introduce HistoClean; a user-friendly, graphical user interface that brings together multiple image processing modules into one easy to use toolkit. HistoClean is an application that aims to help bridge the knowledge gap between pathologists, biomedical scientists and computer scientists by providing transparent image augmentation and pre-processing techniques which can be applied without prior coding knowledge. In this study, we utilise HistoClean to pre-process images for a simple convolutional neural network used to detect stromal maturity, improving the accuracy of the model at a tile, region of interest, and patient level. This study demonstrates how HistoClean can be used to improve a standard deep learning workflow via classical image augmentation and pre-processing techniques, even with a relatively simple convolutional neural network architecture. HistoClean is free and open-source and can be downloaded from the Github repository here: https://github.com/HistoCleanQUB/HistoClean.
在过去十年中,数字病理学的发展为癌症预测和预后开辟了新的研究途径并带来了新的见解。特别是,用于分析数字图像的深度学习和计算机视觉技术激增。该领域的常见做法是使用图像预处理和增强来防止偏差和过拟合,从而创建一个更强大的深度学习模型。这通常需要查阅多个编码库的文档,以及反复试验以确保在图像上使用的技术是合适的。在此,我们介绍HistoClean;一个用户友好的图形用户界面,它将多个图像处理模块整合到一个易于使用的工具包中。HistoClean是一个旨在通过提供透明的图像增强和预处理技术来帮助弥合病理学家、生物医学科学家和计算机科学家之间知识差距的应用程序,这些技术无需事先具备编码知识即可应用。在本研究中,我们利用HistoClean对用于检测基质成熟度的简单卷积神经网络的图像进行预处理,在切片、感兴趣区域和患者层面提高了模型的准确性。这项研究展示了即使使用相对简单的卷积神经网络架构,HistoClean如何通过经典的图像增强和预处理技术用于改进标准的深度学习工作流程。HistoClean是免费且开源的,可从此处的Github仓库下载:https://github.com/HistoCleanQUB/HistoClean。