Suppr超能文献

一种以最少人工干预快速处理相机陷阱图像的方法。

An approach to rapid processing of camera trap images with minimal human input.

作者信息

Duggan Matthew T, Groleau Melissa F, Shealy Ethan P, Self Lillian S, Utter Taylor E, Waller Matthew M, Hall Bryan C, Stone Chris G, Anderson Layne L, Mousseau Timothy A

机构信息

Department of Biological Sciences University of South Carolina (UofSC) Columbia South Carolina USA.

South Carolina Army National Guard Environmental Office Eastover South Carolina USA.

出版信息

Ecol Evol. 2021 Aug 2;11(17):12051-12063. doi: 10.1002/ece3.7970. eCollection 2021 Sep.

Abstract

Camera traps have become an extensively utilized tool in ecological research, but the manual processing of images created by a network of camera traps rapidly becomes an overwhelming task, even for small camera trap studies.We used transfer learning to create convolutional neural network (CNN) models for identification and classification. By utilizing a small dataset with an average of 275 labeled images per species class, the model was able to distinguish between species and remove false triggers.We trained the model to detect 17 object classes with individual species identification, reaching an accuracy up to 92% and an average F1 score of 85%. Previous studies have suggested the need for thousands of images of each object class to reach results comparable to those achieved by human observers; however, we show that such accuracy can be achieved with fewer images.With transfer learning and an ongoing camera trap study, a deep learning model can be successfully created by a small camera trap study. A generalizable model produced from an unbalanced class set can be utilized to extract trap events that can later be confirmed by human processors.

摘要

相机陷阱已成为生态研究中广泛使用的工具,但即使对于小型相机陷阱研究而言,对相机陷阱网络所生成图像进行人工处理也很快会变成一项艰巨的任务。我们使用迁移学习来创建用于识别和分类的卷积神经网络(CNN)模型。通过利用一个每个物种类别平均有275张标记图像的小型数据集,该模型能够区分不同物种并去除误触发。我们训练该模型以检测17个目标类别并进行单个物种识别,准确率高达92%,平均F1分数为85%。先前的研究表明,每个目标类别需要数千张图像才能达到与人类观察者相当的结果;然而,我们表明用较少的图像就能实现这样的准确率。通过迁移学习和一项正在进行的相机陷阱研究,小型相机陷阱研究可以成功创建深度学习模型。从不平衡类集生成的通用模型可用于提取陷阱事件,随后由人工处理人员进行确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验