Suppr超能文献

利用机器学习进行对映选择性催化:从梦想变为现实。

Leveraging Machine Learning for Enantioselective Catalysis: From Dream to Reality.

机构信息

Dept. Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.

Dept. Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States;, Email:

出版信息

Chimia (Aarau). 2021 Aug 25;75(7-8):592-597. doi: 10.2533/chimia.2021.592.

Abstract

Catalyst optimization for enantioselective transformations has traditionally relied on empirical evaluation of catalyst properties. Although this approach has been successful in the past it is intrinsically limited and inefficient. To address this problem, our laboratory has developed a fully informatics guided workflow to leverage the power of artificial intelligence (AI) and machine learning (ML) to accelerate the discovery and optimization of any class of catalyst for any transformation. This approach is mechanistically agnostic, but also serves as a discovery platform to identify high performing catalysts that can be subsequently investigated with physical organic methods to identify the origins of selectivity.

摘要

催化剂的优化对于对映选择性转化一直依赖于对催化剂性质的经验评估。尽管这种方法在过去取得了成功,但它本质上是有限的和低效的。为了解决这个问题,我们的实验室开发了一个完全由信息学指导的工作流程,利用人工智能(AI)和机器学习(ML)的力量来加速任何一类催化剂对于任何转化的发现和优化。这种方法在机理上是不可知的,但也可以作为一个发现平台,以确定高性能的催化剂,然后可以用物理有机方法来研究它们,以确定选择性的起源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验