Lu Zhuoyang, Liu Xiangyang, He Maogang, Long Jiangang, Liu Jiankang
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
The Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Nanoscale. 2021 Oct 1;13(37):15928-15936. doi: 10.1039/d1nr04133a.
In the last decade, breakthroughs in liquid-phase transmission electron microscopy (TEM) have enabled visualization of the motion dynamics of nanostructures in liquid media with unprecedented detail. However, it remains a significant challenge to perform liquid-phase TEM due to the intricate preparation procedure of liquid cells to keep liquid from evaporating under ultrahigh vacuum conditions in TEM columns. In the present study, the nonvolatility and remarkable solvation property of ionic liquids (ILs) is exploited to image the dynamic processes of DNA supramolecular aggregates and Au nanoparticle (NP) aggregates encompassing Brownian motions, interactions among individual nanoobjects and changes in architecture at nanometer resolution. Significant differences in motion behaviors are observed between DNA supramolecular aggregates and Au NP aggregates. Moreover, the temperature and dose dependence of dynamic motions are also investigated. The findings provide insights into the dynamics of DNA supramolecular aggregates and Au NP aggregates in ILs and present an easily accessible approach for probing the dynamic processes of biomacromolecular and other soft matter aggregates with various kinds of ILs at the nanoscale level.
在过去十年中,液相透射电子显微镜(TEM)取得的突破使得人们能够以前所未有的细节观察液体介质中纳米结构的运动动力学。然而,由于在TEM柱的超高真空条件下防止液体蒸发的液体池制备过程复杂,进行液相TEM仍然是一项重大挑战。在本研究中,利用离子液体(ILs)的不挥发性和显著的溶剂化特性,以纳米分辨率成像DNA超分子聚集体和金纳米颗粒(NP)聚集体的动态过程,包括布朗运动、单个纳米物体之间的相互作用以及结构变化。观察到DNA超分子聚集体和金NP聚集体在运动行为上存在显著差异。此外,还研究了动态运动的温度和剂量依赖性。这些发现为深入了解ILs中DNA超分子聚集体和金NP聚集体的动力学提供了见解,并提出了一种易于实现的方法,用于在纳米尺度上探测各种ILs作用下生物大分子和其他软物质聚集体的动态过程。