Suppr超能文献

DNA-金纳米复合物在石墨烯液相电子显微镜中的三维运动。

3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

机构信息

Department of Chemistry, ∥Miller Institute for Basic Research in Science, and §Department of Physics, University of California , Berkeley, California 94720, United States.

出版信息

Nano Lett. 2013 Sep 11;13(9):4556-61. doi: 10.1021/nl402694n. Epub 2013 Aug 20.

Abstract

Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution.

摘要

液相透射电子显微镜(TEM)可以在液体介质中探测和可视化具有结构或功能细节的纳米尺度下的动态事件。早期的研究工作主要集中在硬材料体系的生长和转化动力学上,依赖于它们在电子束下的稳定性。我们最近开发的石墨烯液相池技术将这种成像的空间分辨率提高到了原子尺度,但仍集中在金属纳米晶体的生长轨迹上。在这里,我们采用这种技术来对软物质的三维(3D)动力学进行成像,以双链 DNA(dsDNA)连接金纳米晶体为例,分辨率达到纳米级。我们首先证明了石墨烯液相池可以密封比以前研究的具有更低蒸气压的水溶液样品,防止 TEM 中的高真空。然后,通过对实时纳米晶体轨迹的定量分析,我们表明 dsDNA 的状态和构型决定了连接纳米晶体在数分钟的成像时间内的运动。dsDNA 的这种持续连接能力使我们能够通过 TEM 对其动力学进行前所未有的连续成像。此外,惰性石墨烯表面最大限度地减少了样品-基底的相互作用,并允许整个纳米结构在液体环境中自由旋转;因此,我们从旋转过程中捕获的一系列二维投影 TEM 图像中开发并实现了纳米结构的 3D 构型和运动的重建。除了进一步证明纳米缀合物的结构稳定性外,这种重建还展示了 TEM 的 3D 动态成像,超出了其在观察扁平化和干燥样品方面的传统用途。总之,我们预见到石墨烯液相池 TEM 在以纳米分辨率成像 3D 生物分子转化或相互作用动力学方面的新的令人兴奋的用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验