Beil Stephan, Markiewicz Marta, Pereira Cristina Silva, Stepnowski Piotr, Thöming Jorg, Stolte Stefan
Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal.
Chem Rev. 2021 Nov 10;121(21):13132-13173. doi: 10.1021/acs.chemrev.0c01265. Epub 2021 Sep 15.
The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.
离子液体(ILs)具有可定制且通常独特的性质,这推动它们在广泛的开创性技术中得到应用。在这种情况下,离子液体的模块化设计允许主动选择有利于环境可持续性的结构——理想情况下不会损害其技术性能。为实现这一目标,必须考虑整个生命周期,并同时考虑各个方面。在本综述中,我们讨论了离子液体的结构设计如何在其生命周期的所有阶段影响其环境影响,并仔细审查现有数据,以指出需要进一步研究活动的知识空白。设计更具可持续性的离子液体始于选择最有益的前体和合成路线,充分考虑它们的技术性质和特定应用性能,并特别从其(生态)毒性、生物和非生物降解性、迁移性和生物累积潜力方面考虑其环境归宿。特别强调已报道的结构-活性关系以及在分子水平上提出的可能使经验性发现的设计标准合理化的机制。