Li Panlong, Feder-Kubis Joanna, Kunigkeit Jonas, Zielińska-Błajet Mariola, Brunner Eike, Grothe Julia, Kaskel Stefan
Inorganic Chemistry Center I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202412674. doi: 10.1002/anie.202412674. Epub 2024 Nov 7.
The field of bioinspired iontronics, bridging electronic devices and ionic systems, has multiple biological applications. Carbon-based ultracapacitive devices hold promise for controlling bioactive ions via electric double layers due to their high-surface-area and biocompatible porous carbon electrodes. However, the interplay between complex bioactive ions and porous carbons remains unclear due to the variety of structures of bioactive ions present in biological systems. Herein, we investigate the adsorption behavior of a series of bioactive ammonium-based cations with varying alkyl chain lengths in nanoporous carbons. We find that strong physisorption results from the synergistic hydrophobic interaction and electrostatic attraction between porous carbons (with a negative zeta potential) and bioactive cations. Bioactive cations with varying alkyl chain lengths can be irreversibly physically adsorbed and confined within nanoporous carbons resulting in anion enrichment and depletion during electric polarization. This situation, in turn, results in a characteristic memristive behavior in all-carbon capacitive ionic memristor devices. Our findings highlight the relationship between the resistance state of the memristor and ion adsorption mechanisms in all-carbon capacitive devices, which hold potential for future transmitter delivery, biointerfacing, and neuromorphic devices.
仿生离子电子学领域横跨电子设备和离子系统,具有多种生物学应用。基于碳的超级电容设备因其高表面积和生物相容性多孔碳电极,有望通过双电层控制生物活性离子。然而,由于生物系统中存在的生物活性离子结构多样,复杂的生物活性离子与多孔碳之间的相互作用仍不清楚。在此,我们研究了一系列具有不同烷基链长度的生物活性铵基阳离子在纳米多孔碳中的吸附行为。我们发现,强物理吸附源于多孔碳(具有负zeta电位)与生物活性阳离子之间的协同疏水相互作用和静电吸引。具有不同烷基链长度的生物活性阳离子可不可逆地物理吸附并限制在纳米多孔碳内,导致电极化过程中阴离子的富集和耗尽。反过来,这种情况会在全碳电容离子忆阻器器件中产生特征性的忆阻行为。我们的研究结果突出了忆阻器的电阻状态与全碳电容设备中离子吸附机制之间的关系,这为未来的递质传递、生物接口和神经形态设备带来了潜力。
Angew Chem Int Ed Engl. 2024-12-16
Angew Chem Int Ed Engl. 2022-12-12
Faraday Discuss. 2017-9-22
Small Methods. 2025-3-18
J Phys Chem Lett. 2013-2-7
ACS Appl Mater Interfaces. 2024-12-18
Chem Sci. 2025-3-10
Natl Sci Rev. 2024-12-14
Angew Chem Int Ed Engl. 2023-8-21
Front Pharmacol. 2023-3-17
Proc Natl Acad Sci U S A. 2023-1-3
Angew Chem Int Ed Engl. 2022-12-12
Clin J Am Soc Nephrol. 2022-8