文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有神经形态功能的生物活性离子限制型超级电容忆阻器

Bioactive Ion-Confined Ultracapacitive Memristors with Neuromorphic Functions.

作者信息

Li Panlong, Feder-Kubis Joanna, Kunigkeit Jonas, Zielińska-Błajet Mariola, Brunner Eike, Grothe Julia, Kaskel Stefan

机构信息

Inorganic Chemistry Center I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.

Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202412674. doi: 10.1002/anie.202412674. Epub 2024 Nov 7.


DOI:10.1002/anie.202412674
PMID:39292967
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11627131/
Abstract

The field of bioinspired iontronics, bridging electronic devices and ionic systems, has multiple biological applications. Carbon-based ultracapacitive devices hold promise for controlling bioactive ions via electric double layers due to their high-surface-area and biocompatible porous carbon electrodes. However, the interplay between complex bioactive ions and porous carbons remains unclear due to the variety of structures of bioactive ions present in biological systems. Herein, we investigate the adsorption behavior of a series of bioactive ammonium-based cations with varying alkyl chain lengths in nanoporous carbons. We find that strong physisorption results from the synergistic hydrophobic interaction and electrostatic attraction between porous carbons (with a negative zeta potential) and bioactive cations. Bioactive cations with varying alkyl chain lengths can be irreversibly physically adsorbed and confined within nanoporous carbons resulting in anion enrichment and depletion during electric polarization. This situation, in turn, results in a characteristic memristive behavior in all-carbon capacitive ionic memristor devices. Our findings highlight the relationship between the resistance state of the memristor and ion adsorption mechanisms in all-carbon capacitive devices, which hold potential for future transmitter delivery, biointerfacing, and neuromorphic devices.

摘要

仿生离子电子学领域横跨电子设备和离子系统,具有多种生物学应用。基于碳的超级电容设备因其高表面积和生物相容性多孔碳电极,有望通过双电层控制生物活性离子。然而,由于生物系统中存在的生物活性离子结构多样,复杂的生物活性离子与多孔碳之间的相互作用仍不清楚。在此,我们研究了一系列具有不同烷基链长度的生物活性铵基阳离子在纳米多孔碳中的吸附行为。我们发现,强物理吸附源于多孔碳(具有负zeta电位)与生物活性阳离子之间的协同疏水相互作用和静电吸引。具有不同烷基链长度的生物活性阳离子可不可逆地物理吸附并限制在纳米多孔碳内,导致电极化过程中阴离子的富集和耗尽。反过来,这种情况会在全碳电容离子忆阻器器件中产生特征性的忆阻行为。我们的研究结果突出了忆阻器的电阻状态与全碳电容设备中离子吸附机制之间的关系,这为未来的递质传递、生物接口和神经形态设备带来了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/1b87bdc47b6f/ANIE-63-e202412674-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/276b37bbfc4c/ANIE-63-e202412674-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/543e9a89cd6a/ANIE-63-e202412674-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/1b87bdc47b6f/ANIE-63-e202412674-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/276b37bbfc4c/ANIE-63-e202412674-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/543e9a89cd6a/ANIE-63-e202412674-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3fb/11627131/1b87bdc47b6f/ANIE-63-e202412674-g004.jpg

相似文献

[1]
Bioactive Ion-Confined Ultracapacitive Memristors with Neuromorphic Functions.

Angew Chem Int Ed Engl. 2024-12-16

[2]
Bioactive Ion-Based Switchable Supercapacitors.

Angew Chem Int Ed Engl. 2022-12-12

[3]
Biredox ionic liquids: new opportunities toward high performance supercapacitors.

Faraday Discuss. 2017-9-22

[4]
Emerging Liquid-Based Memristive Devices for Neuromorphic Computation.

Small Methods. 2025-3-18

[5]
Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.

J Phys Chem Lett. 2013-2-7

[6]
Angstrom Scale Ionic Memristors' Engineering with van der Waals Materials: A Route to Highly Tunable Memory States.

ACS Appl Mater Interfaces. 2024-12-18

[7]
Geometrically Scalable Iontronic Memristors: Employing Bipolar Polyelectrolyte Gels for Neuromorphic Systems.

ACS Nano. 2024-6-11

[8]
Modulating Ionic Hysteresis to Selective Interaction Mechanism toward Transition from Supercapacitor-Memristor to Supercapacitor-Diode.

Nano Lett. 2025-4-2

[9]
Thousands of conductance levels in memristors integrated on CMOS.

Nature. 2023-3

[10]
Constructing a supercapacitor-memristor through non-linear ion transport in MOF nanochannels.

Natl Sci Rev. 2024-9-11

引用本文的文献

[1]
Nanostructured h-WO-Based Ionologic Gates with Enhanced Rectification and Transistor Functionality.

ACS Nano. 2025-6-10

[2]
Carbon-based iontronics - current state and future perspectives.

Chem Sci. 2025-3-10

[3]
Non-linear ion transport in nanopores for the design of ultracapacitive ionic memristors.

Natl Sci Rev. 2024-12-14

本文引用的文献

[1]
General Design Concepts for CAPodes as Ionologic Devices.

Angew Chem Int Ed Engl. 2023-8-21

[2]
Menthol: An underestimated anticancer agent.

Front Pharmacol. 2023-3-17

[3]
Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing.

Adv Mater. 2023-9

[4]
Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics.

Science. 2023-2-24

[5]
Neuromorphic functions with a polyelectrolyte-confined fluidic memristor.

Science. 2023-1-13

[6]
Iontronic analog of synaptic plasticity: Hydrogel-based ionic diode with chemical precipitation and dissolution.

Proc Natl Acad Sci U S A. 2023-1-3

[7]
Bioactive Ion-Based Switchable Supercapacitors.

Angew Chem Int Ed Engl. 2022-12-12

[8]
Removal of Uremic Solutes from Dialysate by Activated Carbon.

Clin J Am Soc Nephrol. 2022-8

[9]
Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors.

Nano Lett. 2022-3-23

[10]
Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors.

Chem Rev. 2022-2-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索