Suppr超能文献

利用模拟研究水产养殖中具有相等和不相等家系贡献的基因型误差对基因组预测准确性的影响。

Impact of genotypic errors with equal and unequal family contribution on accuracy of genomic prediction in aquaculture using simulation.

机构信息

ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.

Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.

出版信息

Sci Rep. 2021 Sep 15;11(1):18318. doi: 10.1038/s41598-021-97873-5.

Abstract

Genotypic errors, conflict between recorded genotype and the true genotype, can lead to false or biased population genetic parameters. Here, the effect of genotypic errors on accuracy of genomic predictions and genomic relationship matrix are investigated using a simulation study based on population and genomic structure comparable to black tiger prawn, Penaeus monodon. Fifty full-sib families across five generations with phenotypic and genotypic information on 53 K SNPs were simulated. Ten replicates of different scenarios with three heritability estimates, equal and unequal family contributions were generated. Within each scenario, four SNP densities and three genotypic error rates in each SNP density were implemented. Results showed that family contribution did not have a substantial impact on accuracy of predictions across different datasets. In the absence of genotypic errors, 3 K SNP density was found to be efficient in estimating the accuracy, whilst increasing the SNP density from 3 to 20 K resulted in a marginal increase in accuracy of genomic predictions using the current population and genomic parameters. In addition, results showed that the presence of even 10% errors in a 10 and 20 K SNP panel might not have a severe impact on accuracy of predictions. However, below 10 K marker density, even a 5% error can result in lower accuracy of predictions.

摘要

基因型错误,即记录的基因型与真实基因型之间的冲突,可能导致种群遗传参数出现错误或有偏差。本研究通过基于与斑节对虾(Penaeus monodon)相似的群体和基因组结构的模拟研究,探讨了基因型错误对基因组预测准确性和基因组关系矩阵的影响。模拟了具有表型和基因型信息的 53K SNP 的 50 个全同胞家系,跨越五个世代。针对三种遗传力估计值、相等和不等家系贡献生成了十个不同场景的重复实验。在每个场景中,在每个 SNP 密度下实现了四种 SNP 密度和三种基因型错误率。结果表明,在不同数据集上,家系贡献对预测准确性没有显著影响。在不存在基因型错误的情况下,3K SNP 密度被发现可以有效地估计准确性,而将 SNP 密度从 3 增加到 20K 只会使使用当前群体和基因组参数的基因组预测准确性略有提高。此外,结果表明,即使在 10 和 20K SNP 面板中存在 10%的错误,也可能不会对预测准确性产生严重影响。但是,在低于 10K 标记密度的情况下,即使错误率为 5%也可能导致预测准确性降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f928/8443606/37c8ca7e50c6/41598_2021_97873_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验