Suppr超能文献

中国短期环境细颗粒物空气污染与特定病因心肺疾病的住院费用:多城市分析

Short-Term Ambient Particulate Air Pollution and Hospitalization Expenditures of Cause-Specific Cardiorespiratory Diseases in China: A Multicity Analysis.

作者信息

Xie Yang, Li Zichuan, Zhong Hua, Feng Xing Lin, Lu Pantao, Xu Zhouyang, Guo Tongjun, Si Yaqin, Wang Jinxi, Chen Libo, Wei Chen, Deng Furong, Baccarelli Andrea A, Zheng Zhijie, Guo Xinbiao, Wu Shaowei

机构信息

School of Economics and Management, Beihang University, Beijing, China.

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.

出版信息

Lancet Reg Health West Pac. 2021 Jul 31;15:100232. doi: 10.1016/j.lanwpc.2021.100232. eCollection 2021 Oct.

Abstract

BACKGROUND

Ambient air pollution is leading risk factor for health burden in China. Few studies in China have investigated the economic loss related to short-term exposure to ambient PM, which could trigger acute onset of cardiorespiratory diseases within a few days.

METHODS

Daily ambient air pollutants data are obtained for each city from the National Air Quality Monitoring System and daily hospitalization data are obtained from the urban employee-based basic medical insurance scheme database in 74 Chinese cities with an average coverage of 88.5 million urban employees during 2016-2017. A three-stage time-series analytic approach is used in this study to investigate the impact of short-term exposure to ambient fine particulate (PM) air pollution on hospital admissions, expenses and hospital stays of three cause-specific cardiorespiratory diseases, including lower respiratory infections (LRI), coronary heart disease (CHD) and stroke in the included cities.

FINDINGS

Based on the time-series analysis using daily hospitalization data, 28,560 LRI cases, 54,600 CHD cases, and 23,989 stroke cases are attributable to ambient PM in the 74 cities during the study period, and the related attributable expenses are 220 million CNY (US$ 32.9 million) for LRI, 458 million CNY (US$ 68.5 million) for CHD, and 410 million CNY (US$ 65.8 million) for stroke, respectively. These attributable numbers account for 1.45% to 2.05% of total hospital admissions and 1.10% to 1.51% of total expenses for the three diseases during 2016-2017, respectively. The attributable numbers for the three cause-specific cardiorespiratory diseases would increase to 362,007 hospital admission cases and 3.68 billion CNY expenses ($US550 million) in the entire urban employee population (299 million) in China during 2016-2017, and the related direct economic loss of absence from work would be 798 million CNY (US$ 119.3 million).

INTERPRETATION

Our results support that short-term exposure to ambient PM pollution could lead to significant health and economic impacts in China. Reducing levels of ambient PM can avoid substantial health damage and expenditures, and generate appreciable economic benefits from decreasing absence from work.

FUNDING

Natural Science Foundation of China (82073509, 71903010, 71903011), and the National Key Research and Development Program of China (2017YFC0211600, 2017YFC0211601).

摘要

背景

在中国,环境空气污染是导致健康负担的主要风险因素。中国很少有研究调查与短期暴露于环境细颗粒物(PM)相关的经济损失,这种暴露可能在几天内引发心肺疾病急性发作。

方法

从国家空气质量监测系统获取每个城市的每日环境空气污染物数据,并从中国74个城市基于城镇职工的基本医疗保险计划数据库获取每日住院数据,2016 - 2017年期间平均覆盖8850万城镇职工。本研究采用三阶段时间序列分析方法,调查短期暴露于环境细颗粒物(PM)空气污染对纳入城市中三种特定病因的心肺疾病(包括下呼吸道感染(LRI)、冠心病(CHD)和中风)的住院人数、费用和住院时间的影响。

研究结果

基于使用每日住院数据的时间序列分析,在研究期间,74个城市中28560例下呼吸道感染病例、54600例冠心病病例和23989例中风病例可归因于环境PM,相关归因费用分别为下呼吸道感染2.2亿元人民币(3290万美元)、冠心病4.58亿元人民币(6850万美元)和中风4.1亿元人民币(6580万美元)。这些归因病例数分别占2016 - 2017年三种疾病总住院人数的1.45%至2.05%和总费用的1.10%至1.51%。在2016 - 2017年期间,中国全体城镇职工人群(2.99亿)中,三种特定病因的心肺疾病归因病例数将增至362007例住院病例,费用达36.8亿元人民币(5.5亿美元),相关的缺勤直接经济损失将为7.98亿元人民币(1.193亿美元)。

解读

我们的研究结果支持,在中国,短期暴露于环境PM污染会导致重大的健康和经济影响。降低环境PM水平可避免大量健康损害和支出,并通过减少缺勤产生可观的经济效益。

资金来源

中国国家自然科学基金(82073509、71903010、71903011),以及中国国家重点研发计划(2017YFC0211600、2017YFC0211601)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f8/8342975/15e2e4fdaaac/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验