Song Yongli, Yang Luyi, Li Jiawen, Zhang Mingzheng, Wang Yaohui, Li Shunning, Chen Shiming, Yang Kai, Xu Kang, Pan Feng
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Small. 2021 Oct;17(42):e2102039. doi: 10.1002/smll.202102039. Epub 2021 Sep 15.
Despite their promised safety and mechanical flexibility, solvent-free polymer electrolytes suffer from low Li-ion conductivities due to poor dissociation of conducting salts and low Li -transference numbers due to Li -trapping by ether-linkages. In this work, the authors found that oxygen vacancies carried by nanosized Al O fillers preferentially promotes Li -conduction in poly(ethylene oxide) (PEO). These vacancies and free electrons therein, whose concentration can be tuned, effectively break up the ion pairs by weakening the Coulombic attraction within them, while simultaneously interacting with the anions, thus preferentially constraining the movement of anions. This synergistic dissociation-and-trapping effect leads to the significant and selective improvement in Li-ion conductivity. Solid state batteries built on such PEO-based electrolytes exhibits superior performance at high current density. This discovery reveals a molecular-level rationale for the long-observed phenomenon that certain inorganic nano-fillers improve ion conduction in PEO, and provides a universal approach to tailor superior polymer-based electrolytes for the next generation solid-state batteries.
尽管无溶剂聚合物电解质具有所宣称的安全性和机械柔韧性,但由于导电盐的解离性差,锂离子电导率较低,且由于醚键对锂的捕获作用,锂迁移数也较低。在这项工作中,作者发现纳米尺寸的Al₂O₃填料所携带的氧空位优先促进了聚环氧乙烷(PEO)中的锂传导。这些空位及其中的自由电子,其浓度可以调节,通过削弱离子对内部的库仑引力有效地打破离子对,同时与阴离子相互作用,从而优先限制阴离子的移动。这种协同的解离和捕获效应导致锂离子电导率显著且有选择性地提高。基于这种PEO基电解质构建的固态电池在高电流密度下表现出优异的性能。这一发现揭示了长期以来观察到的某些无机纳米填料改善PEO中离子传导现象的分子层面原理,并为定制用于下一代固态电池的优质聚合物基电解质提供了一种通用方法。