Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States.
ACS Nano. 2016 Dec 27;10(12):11407-11413. doi: 10.1021/acsnano.6b06797. Epub 2016 Nov 28.
Solid Li-ion electrolytes used in all-solid-state lithium-ion batteries (LIBs) are being considered to replace conventional liquid electrolytes that have leakage, flammability, and poor chemical stability issues, which represents one major challenge and opportunity for next-generation high-energy-density batteries. However, the low mobility of lithium ions in solid electrolytes limits their practical applications. Here, we report a solid composite polymer electrolyte with YO-doped ZrO (YSZ) nanowires that are enriched with positive-charged oxygen vacancies. The morphologies and ionic conductivities have been studied systemically according to concentration of YO dopant in the nanowires. In comparison to the conventional filler-free electrolyte with a conductivity of 3.62 × 10 S cm, the composite polymer electrolytes with the YSZ nanowires show much higher ionic conductivity. It indicates that incorporation of 7 mol % of YO-doped ZrO nanowires results in the highest ionic conductivity of 1.07 × 10 S cm at 30 °C. This conductivity enhancement originates from the positive-charged oxygen vacancies on the surfaces of the nanowires that could associate with anions and then release more Li ions. Our work demonstrates a composite polymer electrolyte with oxygen-ion conductive nanowires that could address the challenges of all-solid-state LIBs.
用于全固态锂离子电池 (LIB) 的固体锂离子电解质正被认为可以替代具有泄漏、易燃和化学稳定性差等问题的传统液体电解质,这代表了下一代高能量密度电池的主要挑战和机遇之一。然而,固体电解质中锂离子的低迁移率限制了其实际应用。在这里,我们报告了一种具有富氧空位的 YO 掺杂 ZrO(YSZ)纳米线的固态复合聚合物电解质。根据纳米线中 YO 掺杂剂的浓度,系统研究了其形态和离子电导率。与传统无填料电解质的电导率为 3.62×10 S cm 相比,具有 YSZ 纳米线的复合聚合物电解质具有更高的离子电导率。结果表明,掺入 7mol%的 YO 掺杂 ZrO 纳米线可在 30°C 时获得最高的离子电导率 1.07×10 S cm。这种电导率的增强源于纳米线表面的带正电荷的氧空位,这些空位可以与阴离子结合,然后释放更多的锂离子。我们的工作展示了一种具有氧离子导电纳米线的复合聚合物电解质,可以解决全固态 LIB 的挑战。