Suppr超能文献

预测根治性前列腺切除术后的生存率:机器学习性能因种族而异。

Predicting survival after radical prostatectomy: Variation of machine learning performance by race.

作者信息

Nayan Madhur, Salari Keyan, Bozzo Anthony, Ganglberger Wolfgang, Carvalho Filipe, Feldman Adam S, Trinh Quoc-Dien

机构信息

Department of Urology, Massachusetts General Hospital, Boston, Massachusetts, USA.

Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.

出版信息

Prostate. 2021 Dec;81(16):1355-1364. doi: 10.1002/pros.24233. Epub 2021 Sep 16.

Abstract

BACKGROUND

Robust prediction of survival can facilitate clinical decision-making and patient counselling. Non-Caucasian males are underrepresented in most prostate cancer databases. We evaluated the variation in performance of a machine learning (ML) algorithm trained to predict survival after radical prostatectomy in race subgroups.

METHODS

We used the National Cancer Database (NCDB) to identify patients undergoing radical prostatectomy between 2004 and 2016. We grouped patients by race into Caucasian, African-American, or non-Caucasian, non-African-American (NCNAA) subgroups. We trained an Extreme Gradient Boosting (XGBoost) classifier to predict 5-year survival in different training samples: naturally race-imbalanced, race-specific, and synthetically race-balanced. We evaluated performance in the test sets.

RESULTS

A total of 68,630 patients met inclusion criteria. Of these, 57,635 (84%) were Caucasian, 8173 (12%) were African-American, and 2822 (4%) were NCNAA. For the classifier trained in the naturally race-imbalanced sample, the F1 scores were 0.514 (95% confidence interval: 0.513-0.511), 0.511 (0.511-0.512), 0.545 (0.541-0.548), and 0.378 (0.378-0.389) in the race-imbalanced, Caucasian, African-American, and NCNAA test samples, respectively. For all race subgroups, the F1 scores of classifiers trained in the race-specific or synthetically race-balanced samples demonstrated similar performance compared to training in the naturally race-imbalanced sample.

CONCLUSIONS

A ML algorithm trained using NCDB data to predict survival after radical prostatectomy demonstrates variation in performance by race, regardless of whether the algorithm is trained in a naturally race-imbalanced, race-specific, or synthetically race-balanced sample. These results emphasize the importance of thoroughly evaluating ML algorithms in race subgroups before clinical deployment to avoid potential disparities in care.

摘要

背景

对生存情况进行可靠预测有助于临床决策和患者咨询。在大多数前列腺癌数据库中,非白种男性的代表性不足。我们评估了一种经过训练用于预测前列腺癌根治术后生存情况的机器学习(ML)算法在不同种族亚组中的性能差异。

方法

我们使用国家癌症数据库(NCDB)来识别2004年至2016年间接受前列腺癌根治术的患者。我们按种族将患者分为白种人、非裔美国人或非白种人、非非裔美国人(NCNAA)亚组。我们训练了一个极端梯度提升(XGBoost)分类器,以预测不同训练样本中的5年生存率:自然种族不平衡、种族特异性和合成种族平衡样本。我们评估了测试集的性能。

结果

共有68630名患者符合纳入标准。其中,57635名(84%)为白种人,8173名(12%)为非裔美国人,2822名(4%)为NCNAA。对于在自然种族不平衡样本中训练的分类器,在种族不平衡、白种人、非裔美国人和NCNAA测试样本中的F1分数分别为0.514(95%置信区间:0.513 - 0.511)、0.511(0.511 - 0.512)、0.545(0.541 - 0.548)和0.378(0.378 - 0.389)。对于所有种族亚组,在种族特异性或合成种族平衡样本中训练的分类器的F1分数与在自然种族不平衡样本中训练的相比,表现出相似的性能。

结论

使用NCDB数据训练的用于预测前列腺癌根治术后生存情况的ML算法在性能上存在种族差异,无论该算法是在自然种族不平衡、种族特异性还是合成种族平衡样本中训练。这些结果强调了在临床应用前在种族亚组中全面评估ML算法以避免潜在护理差异的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验