Suppr超能文献

应用新型机器学习框架,利用监测、流行病学和最终结果(SEER)数据库预测男性非转移性前列腺癌特异性死亡率。

Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database.

机构信息

Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.

Department of Surgery, Division of Urology, University of Cambridge, Cambridge, UK; Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.

出版信息

Lancet Digit Health. 2021 Mar;3(3):e158-e165. doi: 10.1016/S2589-7500(20)30314-9. Epub 2021 Feb 3.

Abstract

BACKGROUND

Accurate prognostication is crucial in treatment decisions made for men diagnosed with non-metastatic prostate cancer. Current models rely on prespecified variables, which limits their performance. We aimed to investigate a novel machine learning approach to develop an improved prognostic model for predicting 10-year prostate cancer-specific mortality and compare its performance with existing validated models.

METHODS

We derived and tested a machine learning-based model using Survival Quilts, an algorithm that automatically selects and tunes ensembles of survival models using clinicopathological variables. Our study involved a US population-based cohort of 171 942 men diagnosed with non-metastatic prostate cancer between Jan 1, 2000, and Dec 31, 2016, from the prospectively maintained Surveillance, Epidemiology, and End Results (SEER) Program. The primary outcome was prediction of 10-year prostate cancer-specific mortality. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using Brier scores. The Survival Quilts model was compared with nine other prognostic models in clinical use, and decision curve analysis was done.

FINDINGS

647 151 men with prostate cancer were enrolled into the SEER database, of whom 171 942 were included in this study. Discrimination improved with greater granularity, and multivariable models outperformed tier-based models. The Survival Quilts model showed good discrimination (c-index 0·829, 95% CI 0·820-0·838) for 10-year prostate cancer-specific mortality, which was similar to the top-ranked multivariable models: PREDICT Prostate (0·820, 0·811-0·829) and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram (0·787, 0·776-0·798). All three multivariable models showed good calibration with low Brier scores (Survival Quilts 0·036, 95% CI 0·035-0·037; PREDICT Prostate 0·036, 0·035-0·037; MSKCC 0·037, 0·035-0·039). Of the tier-based systems, the Cancer of the Prostate Risk Assessment model (c-index 0·782, 95% CI 0·771-0·793) and Cambridge Prognostic Groups model (0·779, 0·767-0·791) showed higher discrimination for predicting 10-year prostate cancer-specific mortality. c-indices for models from the National Comprehensive Cancer Care Network, Genitourinary Radiation Oncologists of Canada, American Urological Association, European Association of Urology, and National Institute for Health and Care Excellence ranged from 0·711 (0·701-0·721) to 0·761 (0·750-0·772). Discrimination for the Survival Quilts model was maintained when stratified by age and ethnicity. Decision curve analysis showed an incremental net benefit from the Survival Quilts model compared with the MSKCC and PREDICT Prostate models currently used in practice.

INTERPRETATION

A novel machine learning-based approach produced a prognostic model, Survival Quilts, with discrimination for 10-year prostate cancer-specific mortality similar to the top-ranked prognostic models, using only standard clinicopathological variables. Future integration of additional data will likely improve model performance and accuracy for personalised prognostics.

FUNDING

None.

摘要

背景

准确的预后对于诊断为非转移性前列腺癌的男性的治疗决策至关重要。目前的模型依赖于预设变量,这限制了它们的性能。我们旨在研究一种新的机器学习方法,以开发一种用于预测 10 年前列腺癌特异性死亡率的改进预后模型,并将其性能与现有的验证模型进行比较。

方法

我们使用 Survival Quilts 推导并测试了一种基于机器学习的模型,这是一种使用临床病理变量自动选择和调整生存模型集合的算法。我们的研究涉及了 2000 年 1 月 1 日至 2016 年 12 月 31 日期间从前瞻性维护的监测、流行病学和最终结果 (SEER) 计划中诊断为非转移性前列腺癌的美国人群队列中的 171942 名男性。主要结局是预测 10 年前列腺癌特异性死亡率。使用一致性指数 (c-index) 评估模型的区分度,使用 Brier 分数评估校准度。将 Survival Quilts 模型与其他 9 种临床使用的预后模型进行比较,并进行决策曲线分析。

结果

纳入 SEER 数据库的 647151 名前列腺癌患者中,有 171942 名患者纳入本研究。随着粒度的增加,区分度得到改善,多变量模型优于分层模型。Survival Quilts 模型对 10 年前列腺癌特异性死亡率的预测具有良好的区分度 (c-index 0·829,95%CI 0·820-0·838),与排名最高的多变量模型相似:PREDICT Prostate (0·820,0·811-0·829)和 Memorial Sloan Kettering Cancer Center (MSKCC) 列线图 (0·787,0·776-0·798)。所有三个多变量模型的 Brier 分数均较低,表明校准良好(Survival Quilts 0·036,95%CI 0·035-0·037;PREDICT Prostate 0·036,95%CI 0·035-0·037;MSKCC 0·037,0·035-0·039)。在分层系统中,癌症前列腺风险评估模型 (c-index 0·782,95%CI 0·771-0·793) 和剑桥预后组模型 (0·779,0·767-0·791) 对预测 10 年前列腺癌特异性死亡率的区分度更高。来自国家综合癌症护理网络、加拿大泌尿生殖放射肿瘤学家、美国泌尿科协会、欧洲泌尿科协会和国家卫生与保健卓越研究所的模型的 c-index 范围为 0·711 (0·701-0·721) 至 0·761 (0·750-0·772)。当按年龄和种族分层时,Survival Quilts 模型的区分度保持不变。决策曲线分析显示,与目前在实践中使用的 MSKCC 和 PREDICT Prostate 模型相比,Survival Quilts 模型具有增量净获益。

解释

一种新的基于机器学习的方法产生了一种预后模型,称为 Survival Quilts,使用仅标准临床病理变量对 10 年前列腺癌特异性死亡率进行预测,其区分度与排名最高的预后模型相似。未来整合更多的数据可能会提高模型的性能和准确性,实现个性化预后。

资金

无。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验