Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Science. 2021 Sep 17;373(6561):1363-1368. doi: 10.1126/science.abe7252. Epub 2021 Sep 16.
Nanostructured metals are usually strong because the ultrahigh density of internal boundaries restricts the mean free path of dislocations. Usually, they are also more brittle because of their diminished work-hardening ability. Nanotwinned materials, with coherent interfaces of mirror symmetry, can overcome this inherent trade-off. We show a bulk nanostructuring method that produces a multiscale, hierarchical twin architecture in a hexagonal closed-packed, solute-free, and coarse-grained titanium (Ti), with a substantial enhancement of tensile strength and ductility. Pure Ti achieved an ultimate tensile strength of almost 2 gigapascals and a true failure strain close to 100% at 77 kelvin. The multiscale twin structures are thermally stable up to 873 kelvin, which is above the critical temperature for many applications in extreme environments. Our results demonstrate a practical route to achieve attractive mechanical properties in Ti without involving exotic and often expensive alloying elements.
纳米结构金属通常具有高强度,因为超高密度的内部界面限制了位错的平均自由程。但由于加工硬化能力降低,它们通常也更脆。具有镜面对称界面的孪晶材料可以克服这种固有的权衡。我们展示了一种块状纳米结构化方法,该方法在无溶质、粗晶粒的六方密排钛(Ti)中产生了多尺度、分级的孪晶结构,显著提高了拉伸强度和延展性。纯钛在 77 开尔文时的极限拉伸强度几乎达到 200 兆帕斯卡,真实失效应变接近 100%。多尺度孪晶结构在 873 开尔文时热稳定,高于许多极端环境应用的临界温度。我们的结果表明,在不涉及奇异且通常昂贵的合金元素的情况下,在 Ti 中实现有吸引力的机械性能的实用途径。