Valmorra F, Yoshida K, Contamin L C, Messelot S, Massabeau S, Delbecq M R, Dartiailh M C, Desjardins M M, Cubaynes T, Leghtas Z, Hirakawa K, Tignon J, Dhillon S, Balibar S, Mangeney J, Cottet A, Kontos T
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
Institute of Industrial Science and Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
Nat Commun. 2021 Sep 16;12(1):5490. doi: 10.1038/s41467-021-25733-x.
The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics.
在最基本层面上对光与物质相互作用的控制已成为量子技术的一项重要资源。在太赫兹频段实现此类接口仍是一个突出问题。在此,我们将捕获于碳纳米管量子点中的单个电子与一个太赫兹谐振器耦合。由此产生的光与物质相互作用达到了深度强耦合 regime,该 regime 仅通过太赫兹谐振器的真空涨落在碳纳米管中诱导出一个太赫兹能隙。这一点通过输运测量得到了直接证实。这种现象是原子物理学中自发辐射抑制的精确对应物,它为利用电流读出光的非经典态开辟了道路。这对于太赫兹量子光学而言将是一种特别有用的资源和前景。