Department of Physics, University of Regensburg , 93040 Regensburg, Germany.
Nano Lett. 2017 Oct 11;17(10):6340-6344. doi: 10.1021/acs.nanolett.7b03103. Epub 2017 Sep 22.
Achieving control over light-matter interaction in custom-tailored nanostructures is at the core of modern quantum electrodynamics. In strongly and ultrastrongly coupled systems, the excitation is repeatedly exchanged between a resonator and an electronic transition at a rate known as the vacuum Rabi frequency Ω. For Ω approaching the resonance frequency ω, novel quantum phenomena including squeezed states, Dicke superradiant phase transitions, the collapse of the Purcell effect, and a population of the ground state with virtual photon pairs are predicted. Yet, the experimental realization of optical systems with Ω/ω ≥ 1 has remained elusive. Here, we introduce a paradigm change in the design of light-matter coupling by treating the electronic and the photonic components of the system as an entity instead of optimizing them separately. Using the electronic excitation to not only boost the electronic polarization but furthermore tailor the shape of the vacuum mode, we push Ω/ω of cyclotron resonances ultrastrongly coupled to metamaterials far beyond unity. As one prominent illustration of the unfolding possibilities, we calculate a ground state population of 0.37 virtual photons for our best structure with Ω/ω = 1.43 and suggest a realistic experimental scenario for measuring vacuum radiation by cutting-edge terahertz quantum detection.
在定制化的纳米结构中实现对光与物质相互作用的控制是现代量子电动力学的核心。在强耦合和超强耦合系统中,激发在一个谐振器和一个电子跃迁之间以所谓的真空拉比频率 Ω 反复交换。当 Ω 接近共振频率 ω 时,会预测到一些新的量子现象,包括压缩态、狄克超辐射相变、普塞尔效应的崩溃以及虚拟光子对的基态群体。然而,具有 Ω/ω ≥ 1 的光学系统的实验实现仍然难以捉摸。在这里,我们通过将系统的电子和光子组件视为一个实体,而不是分别对其进行优化,从而在光与物质的耦合设计中引入了范式转变。我们利用电子激发不仅可以增强电子极化,而且还可以进一步调整真空模式的形状,从而将回旋共振的 Ω/ω 超强力耦合到远超过 1 的超材料中。作为正在展开的可能性的一个突出示例,我们计算了我们最佳结构的 0.37 个虚拟光子的基态群体,其 Ω/ω = 1.43,并提出了一个现实的实验方案,通过使用先进的太赫兹量子检测来测量真空辐射。