Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Brunei.
Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
Sci Rep. 2021 Sep 16;11(1):18515. doi: 10.1038/s41598-021-98001-z.
Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal-insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator. The suggested structure obtained a relatively high sensitivity and acceptable figure of merit and quality factor of about 2473 nm/RIU (refractive index unit), 34.18 1/RIU, and 56.35, respectively. Thus, the plasmonic sensor is ideal for lab-on-chip in gas and biochemical analysis and can significantly enhance the sensitivity by 177% compared to the regular one. Furthermore, the designed structure can apply in nanophotonic devices, and the range of the detected refractive index is suitable for gases and fluids (e.g., gas, isopropanol, optical oil, and glucose solution).
在此,我们设计了一种基于包含银纳米棒的方形环形谐振器和金属-绝缘体-金属总线波导的高灵敏度多模等离子体传感器。有限元法可以详细分析结构的透过率特性和电磁场分布。结果表明,通过在银纳米棒之间产生间隙等离子体共振,可以增强总线波导和侧边耦合谐振器之间的耦合效应,增加谐振器中的腔等离子体模式。所提出的结构获得了相对较高的灵敏度和可接受的品质因数和优值约为 2473nm/RIU(折射率单位)、34.181/RIU 和 56.35,分别。因此,等离子体传感器非常适用于芯片实验室中的气体和生化分析,与常规传感器相比,灵敏度可显著提高 177%。此外,所设计的结构可应用于纳米光子器件,检测折射率的范围适用于气体和液体(例如,气体、异丙醇、光学油和葡萄糖溶液)。