Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050, Iaşi, România.
Sci Rep. 2021 Sep 16;11(1):18481. doi: 10.1038/s41598-021-98006-8.
In this work, the active carbon adsorption and TiO/UV decolorization of black liquor were studied through experimental analysis (planned using Design of Experiments), modelling and optimization (with Response Surface Method and Differential Evolution). The aim is to highlight the importance of optimization methods for increasing process efficiency. For active carbon adsorption, the considered process parameters were: quantity of active carbon, dilution, and contact time. For TiO promoted photochemical decolorization the process parameters were: TiO concentration, UV path length and irradiation time. The determined models had an R squared of 93.82% for active carbon adsorption and of 92.82% for TiO/UV decolorization. The optimization of active carbon resulted in an improvement from 83.08% (corresponding to 50 g/L quantity of active carbon, 30 min contact time and 200 dilution) to 100% (corresponding to multiple combinations). The optimization of TiO/UV decolorization indicated an increase of efficiency from 36.63% (corresponding to 1 g/L TiO concentration, 60 min irradiation time and 5 cm UV path length) to 46.83% (corresponding to 0.4 g/L TiO concentration, 59.99 min irradiation time and 2.85 cm UV path length). These results show that the experiments and the subsequent standard RSM optimization can be further improved, leading to better performance.
本工作通过实验分析(计划采用实验设计)、建模和优化(采用响应面法和差分进化)研究了活性碳吸附和 TiO/UV 对黑液的脱色作用。目的是强调优化方法对提高工艺效率的重要性。对于活性碳吸附,所考虑的工艺参数为:活性碳用量、稀释度和接触时间。对于 TiO 光催化脱色,工艺参数为:TiO 浓度、UV 路径长度和照射时间。确定的模型对于活性碳吸附的 R 平方为 93.82%,对于 TiO/UV 脱色的 R 平方为 92.82%。活性碳的优化结果从 83.08%(对应于 50 g/L 活性碳用量、30 min 接触时间和 200 稀释度)提高到 100%(对应于多种组合)。TiO/UV 脱色的优化表明,效率从 36.63%(对应于 1 g/L TiO 浓度、60 min 照射时间和 5 cm UV 路径长度)提高到 46.83%(对应于 0.4 g/L TiO 浓度、59.99 min 照射时间和 2.85 cm UV 路径长度)。这些结果表明,实验和随后的标准 RSM 优化可以进一步改进,从而提高性能。