Suppr超能文献

O(P, D)与苯反应的交叉束和理论研究:初级产物、分支比及系间窜越的作用

Crossed-Beam and Theoretical Studies of the O(P, D) + Benzene Reactions: Primary Products, Branching Fractions, and Role of Intersystem Crossing.

作者信息

Vanuzzo Gianmarco, Caracciolo Adriana, Minton Timothy K, Balucani Nadia, Casavecchia Piergiorgio, de Falco Carlo, Baggioli Alberto, Cavallotti Carlo

机构信息

Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.

MOX - Modellistica e Calcolo Scientifico, Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy.

出版信息

J Phys Chem A. 2021 Sep 30;125(38):8434-8453. doi: 10.1021/acs.jpca.1c06913. Epub 2021 Sep 17.

Abstract

Reliable modeling of hydrocarbon oxidation relies critically on knowledge of the branching fractions (BFs) as a function of temperature () and pressure () for the products of the reaction of the hydrocarbon with atomic oxygen in its ground state, O(P). During the past decade, we have performed in-depth investigations of the reactions of O(P) with a variety of small unsaturated hydrocarbons using the crossed molecular beam (CMB) technique with mass spectrometric (MS) detection and time-of-flight (TOF) analysis, combined with synergistic theoretical calculations of the relevant potential energy surfaces (PESs) and statistical computations of product BFs, including intersystem crossing (ISC). This has allowed us to determine the primary products, their BFs, and extent of ISC to ultimately provide theoretical channel-specific rate constants as a function of and . In this work, we have extended this approach to the oxidation of one of the most important species involved in the combustion of aromatics: the benzene (CH) molecule. Despite extensive experimental and theoretical studies on the kinetics and dynamics of the O(P) + CH reaction, the relative importance of the CHO (phenoxy) + H open-shell products and of the spin-forbidden CH (cyclopentadiene) + CO and phenol adduct closed-shell products are still open issues, which have hampered the development of reliable benzene combustion models. With the CMB technique, we have investigated the reaction dynamics of O(P) + benzene at a collision energy () of 8.2 kcal/mol, focusing on the occurrence of the phenoxy + H and spin-forbidden CH + CO and phenol channels in order to shed further light on the dynamics of this complex and important reaction, including the role of ISC. Concurrently, we have also investigated the reaction dynamics of O(D) + benzene at the same . Synergistic high-level electronic structure calculations of the underlying triplet/singlet PESs, including nonadiabatic couplings, have been performed to complement and assist the interpretation of the experimental results. Statistical (RRKM)/master equation (ME) computations of the product distribution and BFs on these PESs, with inclusion of ISC, have been performed and compared to experiment. In light of the reasonable agreement between the CMB experiment, literature kinetic experimental results, and theoretical predictions for the O(P) + benzene reaction, the so-validated computational methodology has been used to predict (i) the BF between the CHO + H and CH + CO channels as a function of collision energy and temperature (at 0.1 and 1 bar), showing that their increase progressively favors radical (phenoxy + H)-forming over molecule (CH + CO and phenol stabilization)-forming channels, and (ii) channel-specific rate constants as a function of and , which are expected to be useful for improved combustion models.

摘要

可靠的烃类氧化模型严重依赖于对分支分数(BFs)的了解,分支分数是烃类与基态原子氧O(P)反应产物的函数,它与温度()和压力()有关。在过去十年中,我们使用交叉分子束(CMB)技术结合质谱(MS)检测和飞行时间(TOF)分析,对O(P)与多种小不饱和烃的反应进行了深入研究,并结合了相关势能面(PESs)的协同理论计算以及产物BFs的统计计算,包括系间窜越(ISC)。这使我们能够确定主要产物、它们的BFs以及ISC的程度,最终提供作为和函数的理论通道特定速率常数。在这项工作中,我们将这种方法扩展到了芳烃燃烧中涉及的最重要物种之一的氧化反应:苯(CH)分子。尽管对O(P) + CH反应的动力学和动力学进行了广泛的实验和理论研究,但CHO(苯氧基)+ H开壳产物以及自旋禁阻的CH(环戊二烯)+ CO和苯酚加合物闭壳产物的相对重要性仍然是未解决的问题,这阻碍了可靠的苯燃烧模型的发展。利用CMB技术,我们研究了在8.2 kcal/mol的碰撞能量()下O(P) + 苯的反应动力学,重点关注苯氧基 + H以及自旋禁阻的CH + CO和苯酚通道的出现,以便进一步阐明这个复杂而重要反应的动力学,包括ISC的作用。同时,我们还研究了在相同碰撞能量下O(D) + 苯的反应动力学。对包括非绝热耦合在内的潜在三重态/单重态PESs进行了协同的高水平电子结构计算,以补充和辅助对实验结果的解释。对这些PESs上的产物分布和BFs进行了统计(RRKM)/主方程(ME)计算,包括ISC,并与实验进行了比较。鉴于CMB实验、文献动力学实验结果以及对O(P) + 苯反应的理论预测之间的合理一致性,已使用经过验证的计算方法来预测(i)CHO + H和CH + CO通道之间的BF作为碰撞能量和温度(在0.1和1 bar)的函数,表明它们的增加逐渐有利于形成自由基(苯氧基 + H)的通道而不是形成分子(CH + CO和苯酚稳定化)的通道,以及(ii)通道特定速率常数作为和的函数,预计这些常数将有助于改进燃烧模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81ab/8488941/b5f425420f25/jp1c06913_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验