Balucani Nadia, Vanuzzo Gianmarco, Recio Pedro, Caracciolo Adriana, Rosi Marzio, Cavallotti Carlo, Baggioli Alberto, Della Libera Andrea, Casavecchia Piergiorgio
Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, Perugia 06125, Italy.
Faraday Discuss. 2024 Aug 27;251(0):523-549. doi: 10.1039/d3fd00181d.
Despite extensive experimental and theoretical studies on the kinetics of the O(P) + CH (toluene) reaction and a pioneering crossed molecular beam (CMB) investigation, the branching fractions (BFs) of the CHCHO(methylphenoxy) + H, CHO(phenoxy) + CH, and spin-forbidden CHCH (methylcyclopentadiene) + CO product channels remain an open question, which has hampered the proper inclusion of this important reaction in the chemical modelling of various chemical environments. We report a CMB study with universal soft electron-ionization mass-spectrometric detection of the reactions O(P,D) + toluene at the collision energy of 34.7 kJ mol. From CMB data we have inferred the reaction dynamics and quantified the BFs of the primary products and the role of intersystem crossing (ISC). The CH-elimination channel dominates (BF = 0.69 ± 0.22) in the O(P) reaction, while the H-displacement and CO-formation channels are minor (BF = 0.22 ± 0.07 and 0.09 ± 0.05, respectively), with ISC accounting for more than 50% of the reactive flux. Synergistic transition-state theory (TST)-based master equation simulations including nonadiabatic TST on coupled triplet/singlet potential energy surfaces were employed to compute the product BFs and assist in the interpretation of the CMB results. In the light of the good agreement between the theoretical predictions for the O(P) + toluene reaction and the CMB results as well as the absolute rate constant as a function of temperature () (from literature), the so-validated computational methodology was used to predict channel-specific rate constants as a function of at 1 atm.
尽管对O(P) + CH(甲苯)反应的动力学进行了广泛的实验和理论研究,并且有开创性的交叉分子束(CMB)研究,但CHCHO(甲基苯氧基)+ H、CHO(苯氧基)+ CH以及自旋禁阻的CHCH(甲基环戊二烯)+ CO产物通道的分支比(BFs)仍然是一个悬而未决的问题,这阻碍了在各种化学环境的化学建模中正确纳入这一重要反应。我们报告了一项CMB研究,在34.7 kJ mol的碰撞能量下,对O(P,D) + 甲苯反应进行通用软电子电离质谱检测。从CMB数据中,我们推断了反应动力学,并对初级产物的BFs以及系间窜越(ISC)的作用进行了量化。在O(P)反应中,CH消除通道占主导(BF = 0.69 ± 0.22),而H置换和CO形成通道则较小(分别为BF = 0.22 ± 0.07和0.09 ± 0.05),ISC占反应通量的50%以上。基于协同过渡态理论(TST)的主方程模拟,包括在耦合三重态/单重态势能面上的非绝热TST,用于计算产物BFs并辅助解释CMB结果。鉴于O(P) + 甲苯反应的理论预测与CMB结果以及作为温度函数的绝对速率常数(来自文献)之间的良好一致性,经如此验证后的计算方法被用于预测在1 atm下通道特定速率常数作为函数的值。