IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2205-2219. doi: 10.1109/TNNLS.2021.3105961. Epub 2023 May 2.
Recurrent neural networks (RNNs) are powerful in the tasks oriented to sequential data, such as natural language processing and video recognition. However, because the modern RNNs have complex topologies and expensive space/computation complexity, compressing them becomes a hot and promising topic in recent years. Among plenty of compression methods, tensor decomposition, e.g., tensor train (TT), block term (BT), tensor ring (TR), and hierarchical Tucker (HT), appears to be the most amazing approach because a very high compression ratio might be obtained. Nevertheless, none of these tensor decomposition formats can provide both space and computation efficiency. In this article, we consider to compress RNNs based on a novel Kronecker CANDECOMP/PARAFAC (KCP) decomposition, which is derived from Kronecker tensor (KT) decomposition, by proposing two fast algorithms of multiplication between the input and the tensor-decomposed weight. According to our experiments based on UCF11, Youtube Celebrities Face, UCF50, TIMIT, TED-LIUM, and Spiking Heidelberg digits datasets, it can be verified that the proposed KCP-RNNs have a comparable performance of accuracy with those in other tensor-decomposed formats, and even 278 219× compression ratio could be obtained by the low-rank KCP. More importantly, KCP-RNNs are efficient in both space and computation complexity compared with other tensor-decomposed ones. Besides, we find KCP has the best potential of parallel computing to accelerate the calculations in neural networks.
递归神经网络 (RNN) 在面向序列数据的任务中非常强大,例如自然语言处理和视频识别。然而,由于现代 RNN 具有复杂的拓扑结构和昂贵的空间/计算复杂度,因此对其进行压缩成为近年来的热门且有前途的话题。在众多压缩方法中,张量分解,例如张量火车 (TT)、块项 (BT)、张量环 (TR) 和分层 Tucker (HT),似乎是最令人惊叹的方法,因为可以获得非常高的压缩比。然而,这些张量分解格式都不能同时提供空间和计算效率。在本文中,我们考虑基于一种新的 Kronecker CANDECOMP/PARAFAC (KCP) 分解来压缩 RNN,该分解源自 Kronecker 张量 (KT) 分解,通过提出两种输入和张量分解权重之间乘法的快速算法。根据我们在 UCF11、Youtube Celebrities Face、UCF50、TIMIT、TED-LIUM 和 Spiking Heidelberg digits 数据集上的实验,可以验证所提出的 KCP-RNN 在准确性方面与其他张量分解格式具有可比的性能,甚至可以通过低秩 KCP 获得 278219×的压缩比。更重要的是,与其他张量分解的 RNN 相比,KCP-RNN 在空间和计算复杂度方面都具有效率。此外,我们发现 KCP 具有最佳的并行计算潜力,可以加速神经网络中的计算。