Pickard Joshua, Chen Can, Stansbury Cooper, Surana Amit, Bloch Anthony, Rajapakse Indika
Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
School of Data Science and Society and Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
SIAM J Matrix Anal Appl. 2024;45(3):1621-1642. doi: 10.1137/23m1592547. Epub 2024 Sep 3.
Hypergraphs and tensors extend classic graph and matrix theory to account for multiway relationships, which are ubiquitous in engineering, biological, and social systems. While the Kronecker product is a potent tool for analyzing the coupling of systems in graph or matrix contexts, its utility in studying multiway interactions, such as those represented by tensors and hypergraphs, remains elusive. In this article, we present a comprehensive exploration of algebraic, structural, and spectral properties of the tensor Kronecker product. We express Tucker and tensor train decompositions and various tensor eigenvalues in terms of the tensor Kronecker product. Additionally, we utilize the tensor Kronecker product to form Kronecker hypergraphs, a tensor-based hypergraph product, and investigate the structure and stability of polynomial dynamics on Kronecker hypergraphs. Finally, we provide numerical examples to demonstrate the utility of the tensor Kronecker product in computing Z-eigenvalues, various tensor decompositions, and determining the stability of polynomial systems.
超图和张量将经典的图论和矩阵理论进行了扩展,以处理多路关系,这种关系在工程、生物和社会系统中无处不在。虽然克罗内克积是分析图或矩阵环境中系统耦合的有力工具,但其在研究多路相互作用(如由张量和超图表示的相互作用)方面的效用仍然难以捉摸。在本文中,我们对张量克罗内克积的代数、结构和谱性质进行了全面探索。我们用张量克罗内克积来表示塔克分解和张量列车分解以及各种张量特征值。此外,我们利用张量克罗内克积来形成克罗内克超图,这是一种基于张量的超图积,并研究克罗内克超图上多项式动力学的结构和稳定性。最后,我们提供数值示例来证明张量克罗内克积在计算Z特征值、各种张量分解以及确定多项式系统稳定性方面的效用。