Suppr超能文献

深度学习方法在深层前板层角膜移植术中成功预测大气泡形成。

A deep learning approach for successful big-bubble formation prediction in deep anterior lamellar keratoplasty.

机构信息

Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Ohyaguchikami-machi 30-1, Itabashi-ku, Tokyo, 173-8610, Japan.

Department of Technology and Design Thinking for Medicine (DT2M), Hiroshima University, Hiroshima, Japan.

出版信息

Sci Rep. 2021 Sep 17;11(1):18559. doi: 10.1038/s41598-021-98157-8.

Abstract

The efficacy of deep learning in predicting successful big-bubble (SBB) formation during deep anterior lamellar keratoplasty (DALK) was evaluated. Medical records of patients undergoing DALK at the University of Cologne, Germany between March 2013 and July 2019 were retrospectively analyzed. Patients were divided into two groups: (1) SBB or (2) failed big-bubble (FBB). Preoperative images of anterior segment optical coherence tomography and corneal biometric values (corneal thickness, corneal curvature, and densitometry) were evaluated. A deep neural network model, Visual Geometry Group-16, was selected to test the validation data, evaluate the model, create a heat map image, and calculate the area under the curve (AUC). This pilot study included 46 patients overall (11 women, 35 men). SBBs were more common in keratoconus eyes (KC eyes) than in corneal opacifications of other etiologies (non KC eyes) (p = 0.006). The AUC was 0.746 (95% confidence interval [CI] 0.603-0.889). The determination success rate was 78.3% (18/23 eyes) (95% CI 56.3-92.5%) for SBB and 69.6% (16/23 eyes) (95% CI 47.1-86.8%) for FBB. This automated system demonstrates the potential of SBB prediction in DALK. Although KC eyes had a higher SBB rate, no other specific findings were found in the corneal biometric data.

摘要

评估了深度学习在预测深板层角膜切开术(DALK)中成功大泡(SBB)形成中的功效。回顾性分析了 2013 年 3 月至 2019 年 7 月在德国科隆大学接受 DALK 的患者的病历。患者分为两组:(1)SBB 或(2)大泡失败(FBB)。评估了眼前节光学相干断层扫描和角膜生物测量值(角膜厚度、角膜曲率和密度)的术前图像。选择深度神经网络模型 Visual Geometry Group-16 来测试验证数据、评估模型、创建热图图像和计算曲线下面积(AUC)。这项初步研究共包括 46 名患者(11 名女性,35 名男性)。在圆锥角膜眼(KC 眼)中 SBB 更为常见,而在其他病因引起的角膜混浊中则较少见(非 KC 眼)(p=0.006)。AUC 为 0.746(95%置信区间[CI]0.603-0.889)。SBB 的确定成功率为 78.3%(23 眼中的 18 眼)(95%CI56.3-92.5%),FBB 的确定成功率为 69.6%(23 眼中的 16 眼)(95%CI47.1-86.8%)。该自动化系统展示了 DALK 中 SBB 预测的潜力。尽管 KC 眼的 SBB 发生率较高,但在角膜生物测量数据中未发现其他特定发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bda/8448733/1e0718d88579/41598_2021_98157_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验