IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Portugal,.
Centro de Estudos Geográficos, IGOT - Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Portugal,.
Sci Total Environ. 2022 Jan 20;805:150130. doi: 10.1016/j.scitotenv.2021.150130. Epub 2021 Sep 6.
Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps - built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.
南欧功能城市区(FUAs)越来越容易受到热浪(HW)事件的影响,因此需要采取预期的气候适应措施。在城市环境中,这种适应策略需要深入了解城市对入射太阳辐射的响应,即城市能量平衡循环及其对城市热岛(UHI)效应的影响。尽管现有的日变化陆地表面温度(LST)数据并不能提供这些中纬度 FUAs 中 UHI 的有意义的图景。相反,中午卫星过境时的特征是不存在明显的地表热岛(SUHI)信号,这对应于一天中城市与农村空气温差通常为负的时段。相反,很少有夜间高分辨率 LST 数据。在这项研究中,探索了一种基于能量平衡的机器学习方法,考虑了局部气候区(LCZ),以描述热通量分量的日循环,并在 HW 事件期间预测夜间 SUHI。虽然在日热像图中看不到城市和农村的空间轮廓,但在潜热和储存热通量图中却很明显——在白天,建筑物基础设施吸收热量,然后在夜间将其释放回大气中,而植被土地表面通过蒸散失去白天的热量。对于 LST 预测模型,实现了随机森林(RF)方法。RF 结果表明,该模型可以准确地预测 LST,确保均方根误差小于 0.1 K。潜热和储存热通量分量以及 LCZ 分类是夜间 LST 预测的最重要解释变量,支持采用能量平衡方法。在未来的研究中,将培训和测试其他地点和时间序列数据,提供一种有效的本地城市气候监测工具,在这些工具中无法获得现场空气温度观测数据。