Suppr超能文献

通过人工神经网络揭示与土地利用/土地覆盖变化相关的热特征动态。

Unveiling the Dynamics of Thermal Characteristics Related to LULC Changes via ANN.

作者信息

Khachoo Yasir Hassan, Cutugno Matteo, Robustelli Umberto, Pugliano Giovanni

机构信息

Department of Engineering, University of Naples Parthenope, 80143 Naples, Italy.

University of Benevento Giustino Fortunato, 82100 Benevento, Italy.

出版信息

Sensors (Basel). 2023 Aug 7;23(15):7013. doi: 10.3390/s23157013.

Abstract

Continuous and unplanned urbanization, combined with negative alterations in land use land cover (LULC), leads to a deterioration of the urban thermal environment and results in various adverse ecological effects. The changes in LULC and thermal characteristics have significant implications for the economy, climate patterns, and environmental sustainability. This study focuses on the Province of Naples in Italy, examining LULC changes and the Urban Thermal Field Variance Index (UTFVI) from 1990 to 2022, predicting their distributions for 2030. The main objectives of this research are the investigation of the future seasonal thermal characteristics of the study area by characterizing land surface temperature (LST) through the UTFVI and analyzing LULC dynamics along with their correlation. To achieve this, Landsat 4-5 Thematic Mapper (TM) and Landsat 9 Operational Land Imager (OLI) imagery were utilized. LULC classification was performed using a supervised satellite image classification system, and the predictions were carried out using the cellular automata-artificial neural network (CA-ANN) algorithm. LST was calculated using the radiative transfer equation (RTE), and the same CA-ANN algorithm was employed to predict UTFVI for 2030. To investigate the multi-temporal correlation between LULC and UTFVI, a cross-tabulation technique was employed. The study's findings indicate that between 2022 and 2030, there will be a 9.4% increase in built-up and bare-land areas at the expense of the vegetation class. The strongest UTFVI zone during summer is predicted to remain stable from 2022 to 2030, while winter UTFVI shows substantial fluctuations with a 4.62% decrease in the none UTFVI zone and a corresponding increase in the strongest UTFVI zone for the same period. The results of this study reveal a concerning trend of outward expansion in the built-up area of the Province of Naples, with central northern regions experiencing the highest growth rate, predominantly at the expense of vegetation cover. These predictions emphasize the urgent need for proactive measures to preserve and protect the diminishing vegetation cover, maintaining ecological balance, combating the urban heat island effect, and safeguarding biodiversity in the province.

摘要

持续且无规划的城市化,再加上土地利用土地覆盖(LULC)的负面变化,导致城市热环境恶化,并产生各种不利的生态影响。LULC和热特征的变化对经济、气候模式和环境可持续性具有重大影响。本研究聚焦于意大利那不勒斯省,考察了1990年至2022年期间的LULC变化和城市热场方差指数(UTFVI),并预测了其2030年的分布情况。本研究的主要目标是通过UTFVI表征地表温度(LST),并分析LULC动态及其相关性,从而研究研究区域未来的季节性热特征。为实现这一目标,使用了陆地卫星4 - 5专题制图仪(TM)和陆地卫星9业务陆地成像仪(OLI)的图像。LULC分类采用监督卫星图像分类系统进行,预测则使用细胞自动机 - 人工神经网络(CA - ANN)算法。LST使用辐射传输方程(RTE)计算,同样的CA - ANN算法用于预测2030年的UTFVI。为研究LULC和UTFVI之间的多时间相关性,采用了交叉列表技术。研究结果表明,在2022年至2030年期间,建成区和裸地区域将增加9.4%,代价是植被类别面积减少。预计夏季最强UTFVI区域在2022年至2030年期间将保持稳定,而冬季UTFVI则有大幅波动,无UTFVI区域减少4.62%,同期最强UTFVI区域相应增加。本研究结果揭示了那不勒斯省建成区向外扩张的令人担忧的趋势,中北部地区增长率最高,主要是以植被覆盖为代价。这些预测强调迫切需要采取积极措施来保护日益减少的植被覆盖,维持生态平衡,对抗城市热岛效应,并保护该省的生物多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c483/10422488/6abad386e4e4/sensors-23-07013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验