Bürger R
Institut für Mathematik, Universität Wien, Austria.
IMA J Math Appl Med Biol. 1986;3(4):265-87.
A nonlinear analysis is performed, employing the theory of Lyapunov functions, to examine the relative importance of genetic and phenotypic covariance matrices for the evolution of functionally coupled quantitative traits in an adaptive topography with several directions of increasing fitness. The analysis is based on Lande's evolution equations for phenotypic characters. It is supposed that evolution of a set of functionally constrained characters far from equilibrium corresponds to evolution along a ridge in the fitness landscape. It is shown that the pattern of variation and covariation restricts the possible directions of evolutionary change in the following sense. Any population starting sufficiently near the ridge will evolve along it, provided that one eigenvector of the genetic covariance matrix and one eigenvector of the phenotypic covariance matrix point into the direction of the ridge. Otherwise, the set of initial positions of a population enabling evolution along the ridge is more or less restricted, depending on the degree of deviation of the eigenvectors from the direction of the ridge. Moreover, too much phenotypic variance of the characters under stabilizing selection may inhibit any evolution along the ridge. Thus, the present analysis establishes population-genetic prerequisites and constraints for the evolution of functionally constrained phenotypic traits.
利用李雅普诺夫函数理论进行了非线性分析,以检验在具有多个适应度增加方向的适应地形中,遗传协方差矩阵和表型协方差矩阵对于功能耦合数量性状进化的相对重要性。该分析基于兰德关于表型性状的进化方程。假设一组远离平衡的功能受限性状的进化对应于沿着适应度景观中的一条脊线的进化。结果表明,变异和协变模式在以下意义上限制了进化变化的可能方向。任何起始位置足够靠近脊线的种群都会沿着它进化,前提是遗传协方差矩阵的一个特征向量和表型协方差矩阵的一个特征向量指向脊线的方向。否则,使种群能够沿着脊线进化的初始位置集或多或少会受到限制,这取决于特征向量与脊线方向的偏离程度。此外,在稳定选择下性状的过多表型方差可能会抑制沿着脊线的任何进化。因此,本分析为功能受限表型性状的进化建立了群体遗传学前提和限制。