Bürger Reinhard
Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A 1090, Wien, Austria.
Evolution. 1986 Jan;40(1):182-193. doi: 10.1111/j.1558-5646.1986.tb05729.x.
On the basis of a phenotypic model of R. Lande a nonlinear analysis is performed to investigate the evolutionary dynamics of functionally coupled quantitative traits. The underlying fitness topography has multiple peaks with a ridge and two hills adjacent to a saddle. Evolution of a complex of functionally constrained characters corresponds precisely to moving uphill along a ridge. For modelling the topology of the ridge, I follow ideas of Rechenberg and Wagner and use a so-called corridor model. The analysis reveals certain population-genetic constraints for the evolutionary emergence of a selectively favored complex of functionally constrained characters. Due to the population-genetic structure, as reflected in the pattern of variation and covariation, a population will often not be allowed to become adapted to existing physiological requirements, such as functional coupling of characters. Instead, within the present model where extinction cannot occur, it will evolve in some other direction toward an optimum that may be physiologically rather remote. In particular, there exists an optimal pattern of genetic and phenotypic variances and covariances in the following sense: on the one hand an increasing deviation from this pattern imposes increasing restrictions on the set of initial conditions enabling a population to move uphill along the ridge; on the other hand, an increasing deviation leads to a decreasing rate of adaptation along the ridge. Finally, some consequences of these constraints for possible interpretations of certain empirical results are discussed.
基于R.兰德的一个表型模型,进行了非线性分析,以研究功能耦合数量性状的进化动力学。潜在的适合度地形有多个峰值,有一条脊以及与一个鞍部相邻的两座小山。功能受限性状复合体的进化恰好对应于沿着脊向上移动。为了对脊的拓扑结构进行建模,我遵循雷兴贝格和瓦格纳的思路,使用了一种所谓的走廊模型。该分析揭示了功能受限性状的选择性有利复合体进化出现的某些群体遗传限制。由于群体遗传结构,如变异和协变模式所反映的那样,一个群体通常不被允许适应现有的生理需求,如性状的功能耦合。相反,在当前这个不会发生灭绝的模型中,它将朝着一个可能在生理上相当遥远的最优状态朝着其他某个方向进化。特别是,在以下意义上存在遗传和表型方差及协方差的最优模式:一方面,与这种模式的偏差增加会对使群体能够沿着脊向上移动的初始条件集施加越来越多的限制;另一方面,偏差增加会导致沿着脊的适应速率降低。最后,讨论了这些限制对某些实证结果可能解释的一些影响。